Annex-II: Stochastic Frontier Analysis – Methodology

Following the standard stochastic frontier model for cross section analysis (Aigner *et al.*, 1977) later extended to panel data (Battese and Coelli, 1995), let

where Y_{it} denotes own tax revenue (OTR)/ taxes on commodities and services (TaxCom), X_{it} denotes vector of inputs (*viz.*, Log Per capita GSDP, Square of Log Per capita GSDP and Log share of Agriculture in GSDP) affecting tax revenue for the i^{th} state in the t^{th} period and β is a vector of unknown parameters. Error component is decomposed into two parts v_{it} and u_{it} ; v_{it} is statistical noise term with symmetric distribution while u_{it} is a non-negative error component representing the time varying technical inefficiency. The inefficiency effects are expressed as an explicit function of state-specific variables and a random error to identify the reasons for differences in predicted efficiencies between states as given below

 $u_{it} = Z_{it}\delta + W_{it}.....(2)$

where W_{it} is a random variable defined by truncation of normal distribution with zero mean and variance σ^2 and Z_{it} denotes vector of variables predicting inefficiency (*viz.*, Ratio of transfers in revenue receipts, Aggregate Expenditure to GSDP, Debt-GSDP ratio and VAT Dummy). The estimates of efficiency can be derived once the point estimates of u_{it} are obtained by the following expression;

$$Efficiency = \exp(-\hat{u}_{it})$$
(3)

Table 1: Stochastic Frontier and Technical			
Inefficiency – Estimates			

memoreney Estimates			
	SFA Model 1	SFA Model 2	
	Log OTR- GSDP	Log TaxCom- GSDP	
Stochastic Frontier			
Log Per capita GSDP	0.299 [*] (0.032)	0.281 [*] (0.021)	
Square of Log Per capita GSDP	-0.0148 [*] (0.031)	-0.0143 [*] (0.015)	
Log share of Agriculture in GSDP	-0.0579** (0.006)	-0.0564** (0.004)	
Constant	0.644 (0.365)	0.67 (0.294)	
Inefficiency Equation			
Ratio of transfers in revenue receipts	0.0222*** (0.000)	0.0228 ^{***} (0.000)	
Aggregate Expenditure to GSDP	-0.0557 ^{***} (0.000)	-0.0619 ^{***} (0.000)	
Debt-GSDP ratio	0.00279 [*] (0.024)	0.00472 ^{***} (0.000)	
VAT Dummy	-0.126 ^{***} (0.000)	-0.105 ^{**} (0.002)	
Constant	0.189** (0.001)	0.256 ^{***} (0.000)	
Usigma Constant	-6.868 ^{***} (0.000)	-6.135 ^{***} (0.000)	
Vsigma Constant	-4.320 ^{***} (0.000)	-4.357 ^{***} (0.000)	
Observations	363	401	
Log-Likelihood	262.7	288.7	

p-values in parentheses *p* < 0.05, *p* < 0.01, *p* < 0.001

, v 0.00, p v 0.01, p v 0.001

Table 2: Sigma Convergence Test

	SD Model 1	SD Model 2
Year	0.792 [*] (0.035)	1.155 ^{***} (0.000)
Year sq.	-0.000198 [*] (0.035)	-0.000289*** (0.000)
Constant	-790.6 [*] (0.035)	-1153.7*** (0.000)
Observations	23	25
Log-Likelihood	63.45	70.19

p-values in parentheses

p < 0.05, p < 0.01, p < 0.01