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Anatomy of Price Volatility Transmission in Indian Vegetables Market 
 

Abstract 

 

The study investigates the horizontal and vertical volatility transmission in daily 
prices of three vegetables viz., tomato, potato and onion in India for the period from 
January 2011 to March 2021. The findings demonstrate the presence of horizontal 
price volatility transmission, particularly, from tomato to onion and to potato both 
in the retail and wholesale markets. Further, bidirectional price volatility 
transmission is seen for potato between the wholesale and retail markets, 
reflecting the vertical transmission mechanism. The study also brings out time- 
evolving interdependencies across the three vegetable prices in both retail and 
wholesale markets, but it does not find any differential impact of positive and 
negative price volatility shocks among these vegetables. The study can provide 
useful insights into the future inflation trajectory as and when any of these 
vegetables witness volatility in prices, and thereby help policymakers in planning 
supply-side measures to curb excess volatilities. 
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Executive Summary 

 

The issue of food price volatility is at the core of management of the food 

inflation. It does not pose any major threat when it represents the underlying market 

fundamentals or displays seasonal patterns, but it becomes challenging when there 

are large unanticipated fluctuations in food prices that lead to higher uncertainty for 

producers, traders, consumers, and governments. These fluctuations have a 

disproportionate impact on the economically vulnerable groups who spend a major 

part of their expenditure on food as these groups can experience food insecurity in the 

event of such fluctuations. Therefore, food price volatility has implications for the 

overall socio-economic welfare of the country. 

In India, food price inflation has been a major concern primarily reflecting the 

food price fluctuations both on the upside and downside. Despite making up a small 

portion of the Consumer Price Index Combined (CPI-C) basket, tomato, onion, and 

potato (TOP) - is a major contributor to the volatility of headline inflation. Volatility in 

these vegetable prices may generally be high due to their high perishability and 

vulnerability to weather-related disturbances on the back of relatively less elastic 

demand as these are key vegetables for Indian households.  

The study measures price volatility transmission in tomato, onion, and potato 

at the all-India level by addressing the following three questions: First, how price 

volatility behaves in the key centres of each vegetable? Secondly, whether price 

volatility is transmitted across three vegetables (known as horizontal transmission) at 

the all-India level? Thirdly, whether there is price volatility transmission across the 

supply chain (known as vertical transmission), i.e., from wholesale prices to retail 

prices or vice versa at the all-India level. Vertical transmission is defined as the price 

linkages across the supply chain, whereas horizontal transmission symbolises the 

linkage between different vegetable markets. The price transmission mechanism is 

theoretically based on the Law of One Price (LOP) posited by Cournot (1927) which 

integrates markets vertically and horizontally.  

The study uses the Department of Consumer Affairs (DCA) data for the analysis 

covering a period from January 3, 2011 to March 31, 2021. This has been done 

keeping in view the appropriateness of the methodology for this data set and the co-

movement of DCA TOP prices with the CPI TOP data. The study uses the Baba-Engle-

Kraft-Kroner (BEKK) Generalised Autoregressive Conditional Heteroskedasticity 

(GARCH) model and Dynamic Conditional Correlation model (DCC) for analysing 

volatility transmission across vegetables and across their supply chains. 

   The following are the conclusions from the study. First, there is horizontal 

volatility transmission across these three vegetables in both retail and wholesale 

markets. This transmission can be explained by the common driving factors leading to 

spillovers across the vegetable prices. These include common supply shocks, such as 

extreme weather shocks (cyclones, monsoon failure, unseasonal rains, droughts, 

heatwaves, etc.), hoarding, pest attacks, post-harvest losses and strikes/protests as 
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well as an increase in input costs. In addition, some degree of substitutability and 

complementarity can also be seen among these vegetables. The empirical estimates 

indicate price volatility transmission from tomato to onion and potato, in both retail and 

wholesale markets.  

Second, the vertical transmission (i.e., from wholesale to retail prices or vice 

versa) can be seen in the case of all three vegetables. While the volatility transmission 

between the wholesale and retail prices is bidirectional in the case of potato, there is 

a unidirectional transmission from wholesale to retail prices in the case of onion and 

tomato. The bilateral price volatility transmission between the wholesale and retail 

prices of potato could be because potato is relatively more storable as compared to 

tomato and onion. Hence, when retail prices spike because of any issue in the supply 

chain, the stored wholesale potato prices also respond to that shock.  

Third, the three vegetables have a dynamic conditional correlation in the case 

of both retail and wholesale prices which demonstrates how correlations among their 

prices have changed over time. A higher degree of correlation among prices suggests 

better co-movement and price integration. Fourth, the study does not find any 

evidence of a significant differential impact of positive or negative price volatility 

shocks (asymmetric effects) across these three vegetables in both retail and 

wholesale markets. 

Given the perishable nature, limited substitutability, and increased susceptibility 

to supply shocks, vegetable prices have historically tended to be highly volatile 

imparting volatility to the overall inflation. The results of this study, therefore, have 

important policy implications. As volatility in vegetable prices is driven by recurrent 

supply shocks, supply management measures by the government, such as 

strengthening the supply chain, placing stockholding limits on traders, wholesalers and 

retailers, developing cold storages, reducing post-harvest losses and integrating all 

the participants in the value chain, can help in ensuring domestic availability and stable 

prices.  

The findings of the study hold implications for the management of overall 

inflation. Given the objective of price stability of the central bank, it becomes imperative 

to not just anchor inflation within targeted levels but also sustain inflation at those 

levels. This would require curtailing the primary sources of volatility. The prevalence 

of significant volatility transmission across the three vegetables demonstrates that 

when there is a shock in tomato prices, it is possible to estimate the magnitude of the 

influence on the prices of onion and potato using the transmission mechanism shown 

in the study. 

  



v 
 

Table of Contents 

 
Abstract i 

Acknowledgement ii 

Executive Summary iii 

Introduction 1 

2. Literature Review 3 

3. Stylised Facts: Vegetable Prices 8 

4. Data Description 14 

5. Methodology 17 

5.1 Volatility Background 17 

5.2 BEKK Methodology 18 

5.3 DCC Methodology                                                                                               22 

6. Empirical Analysis 25 

6.1 Centre-wise Analysis 25 

6.2 Horizontal Price Transmission 28 

6.3 Vertical Price Transmission 33 

6.4 Time Varying Correlation Analysis (DCC and ADCC)                                         36 

7. Conclusions and Policy Implications 39

  

References                                                                                                               42 

Appendix                                                                                                                  48 

 

 



vi 

 



1 
 

Anatomy of Price Volatility Transmission  

in Indian Vegetables Market 

Introduction 

A low and stable inflation is important for economic efficiency. The costs 

associated with inflation arise mainly from its uncertainty. High inflation leads to an 

increase in inflation volatility and vice versa (Kim and Lin, 2013). Inflation distorts the 

allocation of resources and, therefore, high and volatile inflation rates create an 

environment of uncertainty with significant economic costs. In short, it is the level of 

inflation as well as the volatility and the risks associated with it, which are the causes 

of concern for policymakers. Volatility is defined as variation in economic variables 

over time. Volatility in prices is not a concern when it represents the underlying market 

fundamentals. However, it may become challenging when there are large 

unanticipated fluctuations in prices that can create uncertainty for producers, traders, 

consumers, and governments. Such fluctuations in prices can have serious 

macroeconomic implications. 

The degree of volatility is typically high for food prices. Movements in food 

prices can have implications for inflation (considering the high weight of food in the 

CPI basket) and growth along with welfare implications, particularly for the poorer 

sections of the society (Sekhar et al., 2017). Even though these concepts of inflation 

and volatility are inter-related, there are important distinctions between the two. An 

increase in inflation may lead to increased variability in inflation. The problem with high 

inflation and related higher volatility is that the volatility is often contagious, i.e., 

volatility may spill over from one market to another, one commodity to another and 

also across the supply chain, which may result in the generalisation of inflation. 

Broadly, the transmission of volatility may be categorised into vertical and 

horizontal based on the concept of market integration. While vertical transmission is 

defined as the price transmission along a certain supply chain, horizontal or spatial 

price transmission examines the connection across several markets having the same 

position in a given supply chain. The prevalence of volatility transmission also 

determines market integration, or the extent to which prices transmit from one market 

to another. Market integration plays a significant role in the efficiency of markets. It 

can help policymakers in implementing reforms that would strengthen the transmission 

of price signals across the value chain or geographically dispersed markets, thereby 

enhancing market performance. This transmission process is influenced by a host of 

factors, such as transportation and transaction costs, and substitutability or 

complementarity among the commodities. Further, volatility transmission is also 

impacted by market structure, product characteristics, and country conditions (Cinar, 

2018). This underlines the fact that policymakers have to be watchful of not only high 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Kim%2C+Dong-Hyeon
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Lin%2C+Shu-Chin
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Lin%2C+Shu-Chin
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price inflation and its volatility but also of the manner in which it feeds into other 

commodities and markets. 

Volatility in food prices could be explained by three fundamental factors. First, 

extreme weather shocks may lead to considerable variation in agricultural produce 

across periods which may feed into food prices leading to higher volatility. Second, the 

demand and supply may be less responsive to changes in prices in the short run. 

Third, in some cases as in the case of India, supply is responsive to prices with a lag, 

also referred to as the cobweb phenomenon which can lead to sudden fluctuations in 

agricultural prices. Given these factors, food price inflation and volatility are closely 

linked yet distinct concepts that jointly influence the headline inflation trajectory along 

with food security (Gilbert and Morgan, 2010a and Burman et al., 2018). 

The supply-side factors that influence food price volatility include weather 

shocks, depleting stocks, and speculation. On the demand side, population growth, 

income changes, and changing food consumption habits impact food prices. The high 

volatility in one of the agricultural products may feed into others depending on factors 

such as transportation and transaction costs and relative substitutability or 

complementarity among the commodities. The price transmission mechanism 

theoretically based on the Law of One Price (LOP) posited by Cournot (1927), 

integrates markets vertically and horizontally. The extent and speed of information flow 

between markets increase with the degree of integration. It provides insights into how 

shocks might spread to other markets, thus serving as a barometer of market 

efficiency (Conforti, 2004). 

The food group, including vegetables, has been the major contributor to the 

volatility in headline inflation (Raj et al., 2019). In the CPI basket, food and fuel are the 

most volatile components with food and beverages having almost half of the total 

weight (46 per cent). This implies that the volatility associated with food inflation can 

get reflected in headline inflation. Food price inflation measured by year-on-year 

change in CPI-food and beverages index, rose sharply in 2019-20 and 2020-21, 

primarily due to the supply-side disruptions from weather-related factors and rising 

international prices of certain commodities that contributed to a sharp increase in the 

prices of vegetables, pulses, and edible oils. This increase in food inflation has been 

accompanied by an increase in volatility. 

 Vegetable inflation is a significant contributor to overall food inflation given their 

high weight in the CPI-food and beverages index. Furthermore, among vegetables, 

the prices of the three key vegetables viz., tomato, onion and potato (TOP) are highly 

volatile. Volatility in TOP prices can often be attributed to supply-side shocks, 

particularly weather-related. These supply disruptions in vegetables may sometimes 

push the headline inflation above the upper threshold of the inflation target. High 
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variability in TOP prices also holds implications for the generation of reliable inflation 

forecasts. Additionally, the relative demand inelasticity of these vegetables has 

distributional implications because of their mass consumption. It may be noted that 

volatility in the prices of one such vegetable may transmit to those of other vegetables 

on account of certain common driving factors (such as extreme weather events) as 

well as the close substitutability or complementarity prevalent among these 

vegetables. In the case of a particular vegetable, the volatility in prices may also 

transmit from wholesale to retail prices or vice versa affecting the value chain 

participants. Such transmission of volatility may make the management of inflation a 

difficult task thereby holding implications for the food security in India. 

Against this backdrop of consequences of vegetable price volatility as well as 

its transmission, this study examines the integration across key vegetable markets- 

tomato, onion and potato. In particular, it addresses three questions: (a) how for each 

vegetable, volatility behaves in the case of key centres; (b) whether volatility is 

transmitted across the key vegetables at the all-India level; and (c) whether there is 

any volatility transmission across the supply chain that is from wholesale prices to 

retail prices or vice versa at the all-India level. To the best of our knowledge, studies 

measuring the volatility transmission across these vegetables displaying high price 

volatility are not available in the Indian context.  

The study is structured as follows: section 2 discusses the extant literature, 

followed by a discussion of some stylised facts for India in section 3. Sections 4 and 5 

lay out the data description along with the methodology used in the study, while section 

6 discusses the empirical findings and estimated results. Section 7 offers the 

conclusions and policy implications. 

 

2. Literature Review 

2.1 Food Price Inflation and Food Price Volatility 

During the last few years, global food prices have increased rapidly. However, 

if one looks at the trajectory of food prices over a longer period from 2003-2022, price 

changes have mostly been cyclical with recurring episodes of ups and downs. Food 

prices rose dramatically from late 2006 through to mid-2008 and declined significantly 

in the second half of 2008. The food prices again spiked in 2010 although with a less 

severity (Gilbert and Morgan, 2010 and Gilbert, 2012). This has ignited a renewed 

interest in the area of food security and management of food prices. The study of food 

price volatility has gained importance over the years due to its deleterious impact, 

especially on the poor, for whom food expenditure comprises a large portion of the 

total spending. Developing countries often bear a greater brunt of such volatility 
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because a larger section of their population is the net buyer of food. Volatility also 

influences domestic prices in the economy (Gilbert and Morgan, 2010) through 

imported consumer inflation and activating price-wage spirals. Thus, it creates 

uncertainty in the short run (Bloch et al., 2007). 

Various papers in the literature have described common macroeconomic 

causes for an increase in food price volatility, such as the promotion of biofuels, 

disruptions in the supply chain, and weather shocks (Serra and Gil, 2013). Variation 

in agricultural commodity prices is often the result of recurring variability in the 

production and consumption side. Thus, volatility in food prices can be described by 

both demand- and supply-side shocks, especially by lower short-run demand and 

supply elasticity coefficients. On the production side, these shocks arise primarily on 

account of yield or weather shocks. While on the contrary, consumption volatility is 

driven by changes in preferences, changes in the prices of substitutes, and income 

changes. On the demand side, a population-led and income-induced demand shock 

along with changing food consumption patterns is a decisive factor determining the 

volatility. Inter-state variations in production, frequent changes in weather, 

unpredictability in international prices, exchange rate volatility, poor infrastructure 

facility, and some of the policies by the government are some of the commonly known 

factors that can affect domestic price variations (Gilbert and Morgan, 2010).  

According to Tadesse et al. (2014), factors that contribute to volatility can be 

divided into three groups, including conditional causes, internal drivers, and 

exogenous shocks (also known as root causes). Root causes may be events like oil 

price shocks, production shocks, extreme weather events, and demand shocks that 

are exogenous factors causing food price changes. These shocks are expected to 

increase food prices and volatility. Timmer (2008) and Gilbert (2010) listed possible 

factors to understand the causes of high food prices. The demand-side drivers include, 

biofuel demands, U.S. dollar appreciation, private stock holdings, public stock 

holdings, food prices, and speculation in agri-commodity market. The list of supply 

factors is not so long, but these factors might not be easy to interpret and quantify like 

yield growth, area expansion, weather variability, and climate change. 

In the Indian context, several factors affecting food price inflation and volatility 

are at play. Food price inflation is contributed heavily by weather shocks and other 

supply-side bottlenecks besides certain other regulatory factors such as high taxes on 

commodities, mandi fees, and other fees charged by commission agents (Ganguly 

and Gulati, 2013). Sekhar et al. (2017) also reaffirmed that supply-side factors, such 

as wage rate, Minimum Support Price (MSP), and production explained most of the 

increase in prices for majority of the groups, particularly for commodities like pulses, 

edible oils, and cereals. On the other hand, demand-side factors were found to be 
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more important in the case of fruits, vegetables, and milk. In their analysis of three 

states viz., Bihar, Andhra Pradesh, and Gujarat, Sekhar et al. (2017) also discovered 

that fruits and vegetable prices were highly volatile, demanding higher attention from 

policymakers. Mittal et al. (2018) studied the volatility of rice and wheat prices 

domestically and internationally, noting that domestic factors were mainly responsible 

for the volatility in their prices. It is pertinent to note that amongst the food price and 

vegetable price volatility, the TOP prices are generally the most volatile (Kishore and 

Shekhar, 2022 and Pratap et al., 2022) 

 This issue of volatility in TOP prices has been examined by various studies 

(Gulati et al., 2022a; Birthal et al., 2019; Areef et al.2020 and Rakshit et al., 2021). 

Volatility in vegetable prices may occur due to reasons like ineffective value chains 

and over-reliance on traditional marketing channels. Gulati et al., 2022 have noted that 

the variations in tomato price volatility are mostly driven by supply-side factors. 

Another study by Birthal et al. (2019) examined the causes of onion price volatility and 

established that uncertainty in market arrivals, inelasticity of demand for onion, and 

adoption of speculative behaviour (e.g., hoarding) are some of the major factors that 

affect onion price volatility. As a result of onion markets' spatial integration, they 

observed that any changes in production caused feedback effects on other markets.  

It has been observed that vegetable prices contribute more than non-food items 

to headline inflation volatility because of shorter crop cycles, high perishability, 

inadequate storage infrastructure, and traditional pre-and post-harvest practices 

(Mukherjee et al., 2022). Regional concentration of production of vegetables in a few 

states only worsens the problem. Weather shocks may harm not only the current yield 

thereby contributing to lower storage but may also have an effect on the current 

storage because of the moisture content. Nevertheless, the impact of intense weather 

shocks is not durable and lasts only for a short time (Kishore and Shekhar, 2022). The 

problem with high inflation and related volatility in these vegetables is that the volatility 

is often contagious, i.e., volatility may spill over from one vegetable market to another, 

and also across the supply chain which may result in the generalisation of inflation. 

The idea of volatility transmission is linked with the idea of market integration.  

2.2 Market Integration and Volatility Transmission 

Markets are perceived as well integrated if changes in prices get completely 

channelised through the domestic markets. If not, then markets are considered to be 

weakly integrated. A number of factors influence market integration out of which price 

support mechanism, market structure, and transport costs are some of the main 

factors affecting price transmission (Zorya et al., 2014). This is on account of the high 

transportation costs and non-competitive market structure that hinder the process of 

full and complete price transmission (Ozturk, 2020). Apart from these, external factors, 
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such as exchange rate and border policies, particularly non-tariff and domestic 

policies, have a major role to play in the spatial price transmission (Conforti, 2004).  

Market consolidation is defined in operational terms as the Law of One Price 

(LOP) propounded by Cournot (1927) which implies that similar products are sold at 

consistent prices throughout various markets. In order to validate the concept of 

integrated markets, LOP has to hold for products in all types of markets. Market 

integration can happen both vertically and horizontally. While the vertical transmission 

is defined as the price linkages along with a given supply chain, horizontal price 

transmission (also called spatial price transmission) represents a linkage among 

various markets having the same position in the supply chain. Several authors (e.g., 

Kinnucan and Forker, 1987; Goodwin and Holt, 1999; Apergis and Rezitis, 2003; 

Buguk et al., 2003; Vavra and Goodwin, 2005;Rezitis and Stavropoulos, 2011; Serra, 

2011; Brosig et al., 2011; Fousekis et al., 2016; and Hassouneh et al., 2017) have 

studied the vertical price transmission along the supply chain. Some of these studies 

have concentrated on analysing spatial price transmission from the worldto the 

domestic prices (e.g., Sharma, 2002; Baquedano et al., 2011; Sekhar, 2012 and 

Baquedano et al., 2014). 

Understanding whether retail prices are causing backward transmission in the 

case of vertical transmission or whether wholesale prices are pushing prices towards 

the extremes of the spectrum is crucial. A major feature of the market integration is 

that if two supply chains are interconnected and there exists significant vertical price 

transmission, then all the supply chain can also be connected (Asche et al., 2007). 

Abdulai (2007) emphasised that studies of price transmission explore the inter-

dependence among prices across the supply chain or markets distinguished spatially. 

This transmission may take place all across agricultural commodities or from non-

agricultural to agricultural commodities (Serra, 2011 and Hassouneh et al., 2011). In 

these circumstances, an important factor that impacts the spatial price transmission is 

substitutability or complementarity among the commodities (Listorti and Esposti, 

2012). 

The transmission may also occur from non-agricultural to agricultural goods, 

because of the built-in production technology, expectations, speculative behaviour in 

financial markets (indicating linkages among future and spot prices), and cost 

structure. Regardless of the underlying differences in terms of background theories, 

the empirical framework concerning spatial price transmission continues to be the 

same. A central theoretical idea that governs horizontal price transmission is the 

concept of spatial arbitrage. On account of this, price differentials among different 

markets will be similar to the transaction costs. Markets can also be linked vertically 
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which refers to price interconnectedness across a given supply chain (Listorti and 

Esposti, 2012). 

Various authors have examined vertical transmission in the case of agricultural 

commodities and food prices. Sidhoum and Serra (2016) investigated vertical volatility 

transmission in the Spanish tomato market across the producer, wholesaler, and 

retailer tomato prices. They established evidence of volatility transmission across the 

tomato marketing chain emphasising a stronger upward transmission from consumer 

to producer to wholesale market level. By using BEKK-GARCH, they also 

demonstrated that producer price volatility is induced by the previous volatility in 

producer prices and consumer prices. This led them to conclude that stabilisation of 

prices at one market level is required to ensure stability throughout the chain. Zheng, 

et al. (2020) analysed volatility transmission in Chinese lychee markets and observed 

price volatility clustering in farm and retail markets. Hassouneh et al. (2017) concluded 

bi-directional volatility transmission across the supply chain of wheat in Slovenia even 

though with a higher effect on producer prices. 

Concerning the spatial transmission, Cinar (2018) analysed the price 

transmission across wheat, barley, and corn markets in Turkey which were used as 

substitutes in Turkish livestock market. With the help of BEKK-GARCH methodology, 

he detected that there was one-way volatility transmission from the barley and corn 

market to the wheat market. On the other hand, there was a two-way transmission 

across the barley and corn markets. In a similar manner, Gardebroek et al. (2016) 

observed volatility spillovers throughout commodities, such as wheat, corn, and 

soybean. Lahiani et al. (2013) found a similar result on volatility transmission among 

the four major agricultural commodities viz. wheat, sugar, cotton, and corn. Asche et 

al. (2007) established the prevalence of both vertical and horizontal price transmission 

in the case of salmons.  

Some studies also probed volatility transmission among various types of edible 

oils because they act as imperfect substitutes. So, there is a greater chance of shocks 

channelising from one edible oil to the other. In this aspect, Bergmann et al. (2016) 

observed substantial grounds of volatility transmission from crude oil to Oceania butter 

and palm oil. On similar lines, Saghaian et al. (2018) established the presence of 

asymmetric spillovers of volatility between ethanol and corn prices, however, the 

results varied for the different frequency prices in addition to different price changes.  

In the Indian context, there are limited studies that have analysed volatility 

transmission at the horizontal or vertical level. Conforti (2004) debated that domestic 

price transmission between the wholesale and retail price is fairly complete for India. 

This aspect was reinforced by Acharya et al. (2012) in his analysis of domestic market 

integration for agricultural commodities (e.g., rice and wheat). In a similar analysis of 
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market integration among three kinds of commodities - one with liberal regional trade 

regime (e.g., tea, coffee, gram, oilcakes, castor oil), second with comparatively higher 

regulation (e.g., edible oil), and third with strict regulation (e.g., rice) - Sekhar (2012) 

established that markets of all commodities were integrated except rice because of 

inter-state trade restrictions. In India, policy instruments govern price transmission in 

agricultural markets. Some of the important policy instruments which affect price 

transmission in India are MSPs, imposition of stocking limits for traders and 

consumers, trade policy instruments like import duties and quantitative restrictions, 

maintenance of buffer stocks and food security reserves (Acharya et al., 2012; Sekhar, 

2012 and Sekhar et al., 2017). Several legislations, such as the Essential 

Commodities Act, 1955 and Agricultural Produce Market Committee (APMC) Act, 

2003 can also have an impact on the price transmission process (Sekhar, 2012). For 

most commodities, inter-state trade restrictions are also prevalent; state agencies, 

such as the Food Corporation of India (FCI) are chiefly responsible for foodgrain 

procurement, thereby impacting market integration. This brings about a greater role of 

private trade in foodgrains (Landes, 2008; and Rashid et al., 2008). The state 

intervention, of course, may be required to lessen the risk arising from volatility in 

international foodgrain markets (Nayyar and Sen, 1994; and Sekhar, 2003).  

The studies conducted on the three key vegetables (TOP) are limited in the 

Indian context. While some of the studies have analysed the value chain of these three 

vegetables (Gulati et al., 2022a; Gulati 2022b and Setiya, 2018) a plethora of studies 

have assessed the role of extreme weather events and news-based indicators in 

determining TOP inflation (Kishore and Shekhar, 2022 and Pratap et al., 2022). A few 

studies have even attempted to see the price transmission (Narendra et al. 2014; Saha 

et al., 2019; Andrle and Blagrave, 2020 and Saha et al., 2021) and volatility 

transmission (Saxena et al., 2020 and Sinha et al., 2018) across the major TOP 

markets in India. However, these studies are limited to price transmission across 

markets and have not captured the volatility transmission across the prices of the three 

vegetables (TOP) or across their supply chains (between wholesale and retail prices) 

as attempted in this study. To fill this research gap, the study analyses volatility 

transmission across three vegetables at the all-India level (known as horizontal 

transmission). It also investigates whether there is volatility transmission across the 

supply chain, i.e., from wholesale prices to retail prices or vice versa at the all-India 

level (known as vertical transmission). 

 

3. Stylised Facts: Vegetable Prices 

The adoption of Flexible Inflation Targeting (FIT) in India since 2016 and 

projected inflation becoming the policy guide, predicting inflation with least error has 
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become the priority. Food group, especially perishables such as vegetables has been 

the major contributor to the error (Raj et al., 2019). In the CPI basket, food and fuel 

are the most volatile components with food and beverages having almost half of the 

total weight (46 per cent). This implies that the volatility associated with food inflation 

can mirror in headline inflation. Food price inflation measured by year-on-year change 

in CPI-food and beverages index, rose sharply in 2019-20 and 2020-21, primarily due 

to the supply-side disruptions from weather-related factors and rising international 

prices of certain commodities that contributed to a sharp increase in the prices of 

vegetables, pulses, and edible oils. This increase in food inflation has been 

accompanied by an increase in volatility. 

Although TOP forms a small part of the CPI basket, the volatility in headline 

inflation is significantly driven by the volatility of TOP (Chart 1.a and Chart 1.b). In the 

CPI food group, vegetables being the most perishable have witnessed the maximum 

volatility. TOP are the three key vegetables based on their weight in CPI vegetables, 

which are also the staple vegetables of India. The production of these vegetables is 

typically more than their consumption. However, whenever there is any adverse supply 

shock, their demand-supply balance is disturbed leading to price rise, which gets 

reflected in CPI headline inflation. 

Chart 1. Weighting Structure and Contribution to Headline Inflation Variance 

  
Note: Item-level data was not released for March-May 2020. 
Sources: NSO; and Authors’ calculations. 

In India, food price inflation followed a downward trajectory till 2018-19 on the 

back of bumper foodgrains and horticultural production. However, it has started picking 

up in the following years primarily owing to a rise in vegetable prices. The increase in 

the incidence of extreme rain events has led to spikes in prices of onions, tomatoes, 

and potatoes. Vegetables with a weight of 13.2 per cent in CPI-Food and beverages 

baskets have historically remained one of the major drivers of food inflation (Chart 2). 

Most of the phases of a pick-up in food prices as well as the subsequent moderations 

have been led by vegetables. 

100.0

45.9

6.0

2.2

0 20 40 60 80 100 120

CPI C

CPI Food

CPI Vegetable

CPI TOP

Per cent

Chart 1.a: Weights in CPI C
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Chart 2: Drivers of CPI Food Inflation 

 
Source: NSO; and Authors’ calculations. 

Among vegetables, onions, tomatoes, and potatoes (combined weight of 2.2 

per cent in CPI-C and 36.5 per cent in CPI-Vegetables) are the three vegetables 

consumed commonly in India and are also very vulnerable to supply-side 

disturbances. These three vegetables have been broadly driving the overall 

vegetables inflation (Chart 3). The supply disturbances can be natural, such as excess 

rains, cyclone and drought or man-made namely, strikes, hoarding and speculation. 

Chart 3: Drivers of CPI Vegetable Inflation 

 
Note: Item-level data was not released for March-May 2020. 
Source: NSO; and Authors’ calculations. 

The problem becomes more severe given the relative inelasticity of demand for 

these key vegetables. Onion price inflation due to its non-substitutability has been the 

most volatile of the three vegetables in the CPI (Table 1). Another noticeable point is 

that the volatility in CPI TOP is almost four times the volatility in CPI vegetables 

excluding TOP underlining the importance of these three vegetables for this study. 
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These three vegetables have contributed significantly to the volatility in 

vegetable inflation. Consequently, TOP prices have also remained the major driver of 

volatility in food and beverages inflation. 

Table 1: Summary Statistics: CPI Food Inflation (January 2015 to March 2021) 

  Onion Potato Tomato TOP Vegetables 
Veg ex 

TOP 
Food and 

Beverages 
Food Ex 

TOP 

 Mean 20.0 10.2 11.6 8.0 5.3 4.0 4.4 4.2 

 Median -0.7 1.1 10.0 0.7 4.7 3.9 4.3 4.5 

 Maximum 327.4 107.0 118.7 132.0 60.5 22.4 12.2 7.9 

 Minimum -67.0 -45.8 -52.2 -31.3 -16.5 -9.5 -1.7 -0.1 

 Std. Dev. 71.3 39.5 37.6 31.4 14.9 7.7 3.2 2.4 

 Skewness 1.9 0.5 0.3 1.5 1.1 0.2 0.3 -0.1 

 Kurtosis 7.5 2.4 2.8 6.1 4.9 2.5 2.5 1.6 

 Observations 71.0 71.0 71.0 71.0 75.0 71.0 75.0 71.0 

Sources: NSO; and Authors’ estimates. 

Apart from retail price indices from the CPI data for these vegetables, we also 

have daily data at retail as well as wholesale level from the Department of Consumer 

Affairs (DCA), which correlates closely with the CPI data (Chart 4). While CPI data is 

released at a monthly frequency and comes with a lag, the prices from DCA enable 

daily tracking of these vegetable prices.  

All three vegetable prices have their own pattern of seasonality depending on 

their cropping pattern and arrivals in the market. For instance, tomato prices usually 

peak during the months of June-July even though its production is reasonably 

distributed throughout the country and year. Onion production has three seasons - 

rabi, kharif and late kharif while potato is mainly a rabi crop. The damage to standing 

or stored crops of these vegetables owing to delayed or extended monsoons, floods, 

cyclones, and pest attacks can cause demand-supply mismatches leading to a spike 

in prices.  

During 2020-21, production deficit in the case of potatoes was caused by 

unseasonal rains in Uttar Pradesh in March 2020 and cyclone-related damage to the 

crop in West Bengal in May 2020. This led to a sharp surge in CPI potato inflation from 

2.3 per cent in November 2019 to 107.0 per cent in November 2020. Similarly, there 

was a steep increase in CPI onion inflation to 327.4 per cent in December 2019 due 

to unseasonal rains during September- October 2019 that damaged the kharif crop in 

major producing states along with damage to transplantation of the late kharif crop.  

The data trends reveal that potato prices follow a pattern that is repeated every 

two years (Chart 4.a). In the case of onion, four peaks can be seen with a gap of 

around 2.5 years reflecting disturbances from supply-side factors like excess rains 

(Chart 4.b). Tomato is most perishable and witnesses a greater frequency of such 

spikes. However, the pickup seen in 2020-21 was quite sharp. Tomato prices usually 
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pick up during summer months (June-July) (Chart 4.c). Further, the impact of any 

supply shock becomes visible quite quickly. Notably, for all these three vegetables, 

the correlation between CPI and DCA retail prices is more than 90 per cent. 

Chart 4: CPI and DCA Vegetable Prices 

   
Note: Item level CPI data for March-May 2020 was not released. 
Sources: NSO; and DCA. 

The production of all these three crops has been consistently greater than their 

estimated demand and yet, there have been spikes in inflation (Chart 5). This points 

towards supply-side disturbances in these markets.  

Chart 5: Annual Production and Demand of TOP in India 

   
Source: Horticulture Statistics at a Glance 2018, Ministry of Agriculture and Farmer’s Welfare. 

Having analysed the existence of high levels of inflation as well as high volatility 

associated with these vegetables, the next question is whether there is transmission 

of volatility from one vegetable to another or across the markets, as the theory of LOP 

suggests. There could be common driving factors leading to simultaneous spikes, 

such as increase in input costs, monsoon failures, cyclones and excess rains along 

with some degree of substitutability and complementarity. Other factors could be 

hoarding, pest attacks, post-harvest losses and strikes/protests. A cursory look at the 

DCA price movements indicates that a spike in the price of one vegetable often 

spreads to another at the retail as well as wholesale level, more so in the case of onion 
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and tomato (Chart 6). Some impact is also seen in the case of potatoes. This kind of 

co-movement warrants an in-depth analysis of any transmission of volatility from one 

commodity to another as well as its magnitude. 

Chart 6: DCA Price Movements 

  
Note: WP-Wholesale Price and RP-Retail Price. 
Source: DCA. 
 

Any spike in prices of the vegetables at the wholesale level gets transmitted to 

the retail prices or vice versa reflecting vertical integration of the market which 

depends on costs associated with transportation, retail margins depending on market 

power, etc. (Chart 7a, 7b, 7c). The direction as well as the speed of transmission 

warrants a clear understanding so that timely measures can be taken up to contain 

any inflationary pressures given the sensitivity of headline inflation to vegetable prices 

as well as the sensitivity of the price of one vegetable to another. 

Chart 7: Price Movements Across Supply Chain 

   
Note: WP-Wholesale and RP-Retail Price. 

Source: DCA. 
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4. Data Description 

For analysing volatility transmission across the commodities and supply chain, 

the study uses daily prices data released by the DCA. The sample period of the study 

spans from January 3, 2011 to March 31, 2021 comprising 3142 data points. The data 

has been transformed into return series (𝐿𝑛𝑃𝑡 − 𝐿𝑛𝑃𝑡−1 ) for estimation purposes. 

Instead of using CPI data directly, the study uses DCA data mainly due to three 

reasons. Firstly, the methodology of ARCH/GARCH is more suitable for prices data 

rather than indices which average out the price levels. Secondly, there are gaps in the 

item level CPI data during the lockdown period, while DCA data is available even 

during the period of lockdown, i.e., from March 24, 2020 till May 31, 2020. Finally, DCA 

data tracks CPI data pretty well in the case of vegetables, giving a strong reason for 

using DCA data (Chart 4). The Price Monitoring Cell of the DCA collects and monitors 

daily prices of 22 essential food items from different urban centres spread across the 

country both at the retail and wholesale level to protect consumers’ interest. Chart 8 

reports the commodities currently monitored under DCA. 

Chart 8: Items in DCA and their Weights in CPI 

 
Sources: DCA; and NSO. 

The DCA centres are spread across the North, West, East, South and North-

Eastern regions of the country (Appendix Table A1). DCA monitors spot and future 

prices of selected essential commodities on a daily basis. The prices are reported daily 

on the website. This study uses spot price data at the all-India level (average of centre-

wise data) in the case of vegetables, to analyse the transmission of volatility across 

the three vegetables (potato, onion, tomato) and across the supply chain, i.e., the 

transmission mechanism between wholesale and retail prices for each vegetable.  

The price reporting is not continuous for all the centres. The study uses an 

average of daily centre-wise prices, which provides an aggregate picture of price 

movements across vegetables as well as supply chain. The return series of these DCA 

all-India prices clearly shows the patterns of volatility clustering as large changes are 

0

1

2

3

4

5

6

7

R
ic

e

w
h

ea
t 

(a
v

er
ag

e)

G
ra

m
 D

al

T
u
r/

A
rh

ar
 D

al

U
ra

d
 D

al

M
o
o

n
g

 D
al

M
as

o
o
r 

D
al

G
ro

u
n

d
 N

u
t 

O
il

M
u
st

ar
d

 O
il

V
an

as
p

at
i

R
ef

in
ed

 o
il

S
u
g

ar

G
u

r

M
il

k

T
ea

S
al

t

P
o
ta

to

O
n

io
n

T
o
m

at
o

4.4

2.6

0.2
0.8

0.3 0.3 0.3 0.3

1.3

0.1

1.3 1.1

0.1

6.4

1.0
0.2

1.0 0.6 0.6

P
er

ce
n
t



15 
 

accompanied by large changes and small changes are accompanied by small (Chart 

9). Such data characteristics indicate the presence of heteroscedasticity and 

subsequently ARCH effect in the data. Further, the presence of higher values of 

kurtosis implies fat tails and that the return series does not follow a normal distribution 

(Appendix Chart A1). 

Chart 9: Price Return Series2 

  

  

  
Source: DCA; and Authors’ calculations. 

                                                           
2Defined as (LnPt -LnPt-1) 
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The DCC for each vegetable pair resulting from the Student’s t-DCC (TDCC) 

model is shown in Chart 10 in terms of retail prices in Panel A and wholesale prices in 

Panel B. The conditional correlation between retail and wholesale prices reveals a 

similar pattern of variations. Conditional correlations between vegetables prices 

(paired) suggest a dynamic relationship. 

Chart 10 A: Onion, Potato, and Tomato Retail Vegetables Prices  

Dynamic Conditional Volatility  
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Source: Authors’ calculations. 

Chart 10 B: Onion, Potato and Tomato Wholesale Vegetables Prices  

Dynamic Conditional Volatility  
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Source: Authors’ calculations. 

As data for all centres are not reported every day, a few centres have been 

selected to study the centre-wise volatility patterns. Centres that have reported data 

for more than 85 per cent of the sample and for which the data gap is not more than 

10 days have been considered (Table 2). These data gaps have been filled by taking 

the average of the last and next observations.  
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Table 2: Centres Selected 

  Onion Potato Tomato 

1 Ahmedabad Ahmedabad Ahmedabad 

2 Bhopal Bhopal Bhopal 

3 Bhubaneshwar Bhubaneshwar Bhubaneshwar 

4 Chennai Chennai Chennai 

5 Delhi Delhi Delhi 

6 Guwahati Guwahati Guwahati 

7 Hyderabad Hyderabad Hyderabad 

8 Jaipur Jaipur Kolkata 

9 Kolkata Kolkata Lucknow 

10 Lucknow Lucknow Mumbai 

11 Mumbai Mumbai Shimla 

12 Shimla Shimla  

Source: DCA. 

5. Methodology 

5.1 Volatility Background 

Volatility is not problematic if prices react to fundamentals like changes in 

production, stocks and use. Volatility, on the other hand, is harmful when prices 

fluctuate beyond the underlying fundamentals. Excessive volatility makes resource 

allocation difficult for stakeholders, namely policymakers, businesses, producers, and 

consumers. The three most common factors influencing prices are: (1) information 

flow that varies seasonally depending upon crop productivity; (2) economic factors 

related to developments on the supply and demand side; and (3) market structure that 

is influenced by the activities of the speculators, hedgers, and traders in the futures 

market (Streeter and Tomek, 1992). Regardless of the variations in the underlying 

theories, the empirical framework and econometric applications for many situations of 

horizontal price transmission are the same (Listorti and Esposti, 2012). 

A brief literature review would shed some light on the common methodologies 

used by researchers for analysing price and volatility transmission. Balcombe and 

Morrison (2002) and Rapsomanikis et al. (2003) provide a comprehensive analytical 

framework for the econometric approach to volatility transmission. The findings from 

these studies suggest that when the cointegration approach and Error Correction 

Model (ECM) are applied to price series, prices behave differently in the short horizon 

but converge in the long horizon. Most of the studies have approached market 

integration from the lens of econometric analysis rather than examining the role of the 

factors such as transportation systems, interviews with traders, shipment tracking, and 

exploring unexploited arbitrage opportunities (Baulch, 1997). 

Volatility and price transmission are linked in the sense that moments of 

euphoria can cause a momentary rise in volatility (also known as volatility clustering) 
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rather than a temporary or permanent shift in price formation and transmission 

processes. When analysing the first point, volatility may be viewed as a variation of 

the residuals of the stochastic process that generated the price series in question. 

When dealing with the second feature of multivariate GARCH (MGARCH) models 

(Bollerslev, 1990), we see multivariate stochastic processes, such as those seen in 

price transmission models, and time-varying variance of one series to transcend to 

another series. Applying the MGARCH models in price transmission brings out the 

distinction between market interdependence and contagion more explicitly. 

Interdependence denotes the regular temporal coupling of processes, whereas 

contagion denotes the transient increase of this interdependence following a big shock 

(in tumultuous times) (Bukug et al., 2003). 

Furthermore, MGARCH models have gained appeal due to their adaptability 

and ability to provide a concise depiction of the generation and transmission of time-

varying volatility across the markets. Abdulai (2007), in his study, emphasised that 

studies of price transmission largely focus on the nature of the link between prices for 

different points in the supply chain or marketplaces separated spatially. Spatial 

transmission is reflected when prices between spatially separated markets tend to be 

related. The price transmission phenomenon integrates markets vertically and 

horizontally. Such studies give a great idea about how shocks can be transmitted 

among one another and act as an indicator of market efficiency. Further research to 

understand the level of adjustment and speed of shock propagation across producer, 

wholesale, and retail market prices is critical, as it represents the activities of market 

actors along the supply chain. 

5.2 BEKK Methodology   

An important observation regarding daily DCA, retail and wholesale price 

movements is their apparent high level of co-movement which is in line with 

expectations. Prices of various agricultural commodities fluctuate together on a regular 

basis (Gilbert, 2010), yet the reasons for the price rises (and volatility) may differ. 

Several studies have examined the volatility transmission mechanism across two or 

more financial variables in the past. Most research tools for understanding time-

varying variances and covariances are borrowed from a class of models known as 

Generalised Autoregressive Conditional Heteroscedasticity or GARCH models. 

GARCH models and their variants are commonly used to measure market price 

volatility (Kalkuhl et al., 2016). While standard deviation and coefficient of variation are 

common volatility measurements, their ability to adequately represent price volatility is 

restricted because they assume price series variance is constant across time. 

Economists have used numerous thorough and complicated ways to describe price 

volatility, the most well-known of which are the Autoregressive Conditional 
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Heteroskedasticity (ARCH) model (Engle, 1982) and the Generalised ARCH (GARCH) 

model (Bollerslev, 1986). ARCH models allow recent shocks to have a favourable 

impact on present volatility. GARCH models, which expand the ARCH model, presume 

that earlier shocks and volatilities influence present fluctuations. 

Equation (1) reports the GARCH (p, q) model as follows: 

 𝜎𝑡
2 = 𝛼0 + ∑ β𝑖 𝜎𝑡−𝑗

2𝑝
𝑗=0 + ∑ 𝛼𝑖 𝑢𝑡−𝑖

2𝑞
𝑖=0                                               (1) 

where, t is the time period;  𝑢𝑡  is the error term and supposed to be a white noise, 

𝑢𝑡−𝑗 , j = 1, 2,..., q are lagged error terms, 𝛼𝑖  are ARCH parameters and 𝛽𝑖  denotes a 

column vector GARCH term. ARCH (α (i)) estimates are often modest (less than 0.1), 

but GARCH (β(i)) estimates are typically large and close to one. As a result, the long 

run persistence is often close to one, showing a near long memory process and 

indicating that a shock in the volatility series affects the future volatility over a long-

time horizon. Furthermore, if the sum of αi + βi is closer to 1, it indicates the series 

volatility to continue. If the total exceeds one, it indicates an explosive series with a 

proclivity to deviate from the mean value. 

The exponential GARCH (EGARCH) model is an extension of the GARCH 

model that offers a few benefits over the GARCH model. The most crucial is its 

logarithmic specification, which permits the positive limitations among the parameters 

to be relaxed. The EGARCH model also contains asymmetries in return volatilities and 

effectively captures the permanence of volatility shocks. 

Equation (2) reports the EGARCH model as follows: 

 𝑙𝑜𝑔 𝜎𝑡
2 = 𝑤 + 𝛼1 𝑔(𝑍𝑡−1) + β 𝜎𝑡−1

2                                                      (2) 

where, 𝑔(𝑍𝑡) = 𝜃𝑍𝑡 +  𝜆(|𝑍𝑡| −  𝐸(|𝑍𝑡|)) 

The advantage of the GARCH models lies in specifying the equations regarding 

the movements of the variances and further, MGARCH models are quite successful in 

predicting the co-movements. Engle and Kroner (1995) developed the Baba-Engle-

Kraft-Kroner (BEKK) version of the MGARCH model which has been used in this study 

to investigate the volatility transmission between the wholesale and retail price 

changes of vegetables as well as across the vegetables in India.  

This study employs the full BEKK model from the GARCH family to assess the 

volatility transmission among the returns of three vegetables (TOP) in one group. 

Engle and Kroner (1995) developed this model to overcome the limitations of the 

diagonal VECH models and diagonal BEKK models to enforce positive-definiteness 

and allow for complicated interactions among the variables. In the diagonal VECH and 
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diagonal BEKK model, the only thing that determines the variance of one series is its 

past shocks. 

The BEKK model is the most intuitive technique to handle multivariate matrix 

operations. In this study, the model is applied to the series residual under the following 

conditions. 

  Mean 𝜀𝑖𝑡 =  𝜇𝑖0 + 𝐶𝑖𝑗𝜀𝑗𝑡−1 + 𝑢𝑖𝑡                                               (3) 

where, 𝑢𝑖𝑡|𝐼𝑖𝑡−1 ≈ 𝑁 (0, ℎ𝑡), 𝑖 = 1,2, 3  

In equation (3), 𝜀𝑖𝑡 represents the sample series estimated residual, and 𝑢𝑖𝑡 is 

a random error component with conditional variance ℎ𝑖𝑡. The market information at 

time t-1 is denoted by 𝐼𝑖𝑡−1. Estimates of matrix elements C can offer assessments of 

the importance of own and cross mean transmission. This multivariate structure aids 

in understanding the measurement of the impacts on innovation in the mean current 

residuals of the current series from its own lagged residuals and those from other 

markets. The above equation (3) describes the mean equation, i = 1, 2, 3 and depicts 

the tri-variate model variables in the following order: onion (1), potato (2), and tomato 

(3). Equation (5) reports the BEKK parametrisation of the multivariate GARCH model 

as follows.  

The BEKK recursion for 𝐻𝑡 is commonly represented as follows:  

𝐻𝑡 = 𝐶𝐶′ + 𝐴𝑈𝑡−1𝑈′𝑡−1𝐴′ +  𝐵𝐻𝑡−1𝐵′                                       (4) 

Since our empirical exercise deals with three variables in an equation at a time, 

we have illustrated a representation of the system BEKK equation with N=3. For such 

an equation,  

𝐻𝑖,𝑗,𝑡 = [
𝜎2

1,1,𝑡−1 ⋯ 𝜎2
1,3,𝑡−1

⋮ ⋱ ⋮
𝜎2

3,1,𝑡−1 ⋯ 𝜎2
3,3,𝑡−1

]                                                                          (5) 

C = [

𝑐1,1 ⋯ 0
⋮ ⋱ ⋮

𝑐3,1 ⋯ 𝑐3,3

] , Α = [

𝑎1,1 ⋯ 𝑎1,3

⋮ ⋱ ⋮
𝑎3,1 ⋯ 𝑎3,3

] 

𝑈𝑡−1 =  [

𝑢1,𝑡−1

⋮
𝑢3,𝑡−1

] , B = [

𝑏1,1 ⋯ 𝑏1,3

⋮ ⋱ ⋮
𝑏3,1 ⋯ 𝑏3,3

]  

The matrix form of the same equation is elaborated as follows: 

𝐻𝑡= [

𝑐1,1 ⋯ 0
⋮ ⋱ ⋮

𝑐3,1 ⋯ 𝑐3,3

] [

𝑐1,1 ⋯ 𝑐3,1

⋮ ⋱ ⋮
𝑐1,3 ⋯ 𝑐3,3

] 
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 + [

𝑎1,1 ⋯ 𝑎1,3

⋮ ⋱ ⋮
𝑎3,1 ⋯ 𝑎3,3

] [

𝑢1,𝑡−1

⋮
𝑢3,𝑡−1

] [𝑢1,𝑡−1 ⋯ 𝑢5𝑡−1] [

𝑎1,1 ⋯ 𝑎3,1

⋮ ⋱ ⋮
𝑎1,3 ⋯ 𝑎3,3

] 

 + [

𝑏1,1 ⋯ 𝑏1,3

⋮ ⋱ ⋮
𝑏3,1 ⋯ 𝑏3,3

] [
𝜎2

1,1,𝑡−1 ⋯ 𝜎2
1,3,𝑡−1

⋮ ⋱ ⋮
𝜎2

3,1,𝑡−1 ⋯ 𝜎2
3,3,𝑡−1

] [

𝑏1,1 ⋯ 𝑏3,1

⋮ ⋱ ⋮
𝑏1,3 ⋯ 𝑏3,3

] 

 = [

𝑐1,1 ⋯ 0
⋮ ⋱ ⋮

𝑐3,1 ⋯ 𝑐3,3

] [

𝑐1,1 ⋯ 𝑐3,1

⋮ ⋱ ⋮
𝑐1,3 ⋯ 𝑐3,3

] 

 + [

𝑎1,1 ⋯ 𝑎1,,3

⋮ ⋱ ⋮
𝑎3,1 ⋯ 𝑎3,3

] [
𝑢2

1,𝑡−1 ⋯ 𝑢1,𝑡−1𝑢3,𝑡−1

⋮ ⋱ ⋮
𝑢3,𝑡−1𝑢1,𝑡−1 ⋯ 𝑢2

3,𝑡−1

] [

𝑎1,1 ⋯ 𝑎3,1

⋮ ⋱ ⋮
𝑎1,3 ⋯ 𝑎3,3

]  

 + [

𝑏1,1 ⋯ 𝑏1,3

⋮ ⋱ ⋮
𝑏3,1 ⋯ 𝑏3 ,3

] [
𝜎2

1,1,𝑡−1 ⋯ 𝜎2
1,3,𝑡−1

⋮ ⋱ ⋮
𝜎2

3,1,𝑡−1 ⋯ 𝜎2
3,3,𝑡−1

] [

𝑏1,1 ⋯ 𝑏3,1

⋮ ⋱ ⋮
𝑏1,3 ⋯ 𝑏3,3

]                         (6)   

Here C is an N × N lower triangular matrix, and A and B are general N × N 

matrices that need not be necessarily symmetric. By construction, this is positive semi-

definite regardless of the values of the parameters and will maintain positive 

definiteness, if B or C is a full rank matrix. Considering the above description in 

equation (6), the BEKK (p,q) model with the aforementioned conditional covariance 

matrix 𝐻𝑡 may be expressed as follows: C is a (3×3) upper triangular matrix of 

constants with elements of cij, U are the squared lagged errors, A is a (3×3) matrix of 

aij coefficients that captures the degree of innovation (ARCH Effects), and B is a (3×3) 

matrix of bij coefficients that represents the volatility persistence and volatility 

interactions across markets i and j. The BEKK parameterisation of the multivariate 

GARCH is calculated by maximising the conditional nonlinear log-likelihood function, 

as described by Engle and Kroner (1995). The Berndt, Hall, and Hausman algorithm 

was employed for numerical maximisation. The MGARCH models are estimated using 

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm using quasi-maximum 

likelihood estimation (QMLE). 

In the study, two MGARCH models have been estimated. The estimate of two 

independent models was done to answer two different questions: one model deals 

with the volatility dynamics and the temporal evolution of interdependencies 

(conditional correlations) across tomato, potato, and onion price returns. The BEKK 

model, in particular, allows for the characterisation of volatility transmission across 

markets since it is flexible enough to account for own- and cross-volatility spillovers as 

well as market persistence. Thus, in addition to dealing with the influence of news 

(both good and negative) in each market on its own volatility, we may also assess how 

news in one market (for example, potato or tomato) may cause more (lower) volatility 
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in other markets (say onion). Another type of model, DCC and ADCC, generates a 

Dynamic Conditional Correlation matrix, which allows researchers to examine if the 

amount of dependency across markets has evolved over time. It solely includes its 

own symmetric and asymmetric market impacts. 

5.3 DCC Methodology 

Price volatility in a market can be transmitted to other markets. However, the 

extent and direction may differ subject to the product characteristics, market structure, 

and country situations impacting volatility dynamics. To understand the dependencies 

between vegetable price returns, co-movement between the level and second order 

plays an important role. Correlation (or rolling) analysis is one of the most basic 

approaches for investigating vegetable market co-movement. A higher degree of 

correlation between markets suggests better co-movement and market integration. 

Engle and Sheppard (2001) and Engle (2002) presented the DCC model, a family of 

multivariate models that is particularly well adapted to studying correlation dynamics 

among price returns. The fundamental benefit of the DCC model over the BEKK model 

is that it does not suffer from dimension impediments and may be used in any 

dimension. This is due to the fact that the estimate may be divided into two steps: first, 

estimating the univariate GARCH and then creating a maximum likelihood function 

with just two parameters, the specifics of which are explained in the following 

paragraphs. 

The multivariate DCC method combines the flexibility of univariate GARCH with 

the intricacy of broad multivariate GARCH. Because the parameters to be estimated 

in the correlation process are independent of the number of series to be correlated, 

the authors begin the empirical specification by assuming that vegetable returns from 

the k series are multivariate, normally distributed with zero mean, and have the Ht 

conditional variance-covariance matrix. The multivariate DCC-GARCH model is 

illustrated below: 

 𝑟𝑡 =  𝜇𝑡 + 𝜀𝑡                                                                    (7) 

With εt | Ωt-1 → N (0, Ht) where rt is the (k×1) vector of the returns, εt is a (k×1) 

vector of zero mean return innovations conditional on the information Ωt-1 available at 

time t-1 and for the bi-variate case, the conditional variance-covariance matrix (Ht) in 

the DCC model can be expressed as: 

 𝐻𝑡 =  𝐷𝑡 𝑅𝑡 𝐷𝑡                                                              (8) 

where, D represents a (k×k) diagonal matrix of the conditional volatility of the returns 

on each asset in the sample, and 𝑅𝑡 is the (k×k) conditional correlation matrix. The 

DCC-GARCH model estimates conditional volatilities and correlations in two steps: 
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Step-1: the mean equation of each asset in the sample, nested in a univariate GARCH 

model of its conditional variance, is estimated. Hence, 𝐷𝑡 can be defined as follows: 

 𝐷𝑡 = (ℎ𝑖𝑖𝑡
½

 ……… ℎ𝑘𝑘𝑡
½

)                                                      (9) 

where, hiit, the conditional variance of each asset, is assumed to follow a univariate 

GARCH (p, q) process, given by the following equation: 

 ℎ𝑖,𝑡+1 =  𝜔𝑖 +  ∑ 𝛼𝑖,𝑝
𝑝𝑖
𝑝=1  𝜀2

𝑖,𝑡+1−𝑝 + ∑ 𝛽𝑖.𝑞
𝑄𝑖
𝑞=1 ℎ𝑖,𝑡−𝑝                     (10) 

However, some constraints as follows, should be enforced to assure non-

negativity and stationarity: 

𝛼𝑖,𝑝  > 0, 𝛽𝑖.𝑞  > 0 and ∑ 𝛼𝑖,𝑝
𝑝𝑖
𝑝=1  𝜀2

𝑖,𝑡+1−𝑝 + ∑ 𝛽𝑖.𝑞
𝑄𝑖
𝑞=1 ℎ𝑖,𝑡−𝑝  < 1 

These univariate variance estimates are then utilised to normalise each asset’s 

zero mean return innovations. The standardised zero mean return innovations are 

assumed to follow a multivariate GARCH (m, n) process in the Step-2. To demonstrate 

the evolution of the time-varying correlation matrix 𝑅𝑡, consider the following: 

 𝑅𝑡 =  (𝑑𝑖𝑎𝑔(𝑄𝑡))
−½

 𝑄𝑡(𝑑𝑖𝑎𝑔(𝑄𝑡))
−½

                                      (11) 

where, 𝑄𝑡 =  (1 − 𝛼 − 𝛽)𝑄 + 𝛼𝜇𝑡−1𝜇′𝑡−1 +  𝛽𝑄𝑡−1 

 Here Qt refers to a (k×k) symmetric positive definite matrix with μit = εit / √ hiit, 𝑞՟ 

is the (k×k) unconditional variance matrix of μit, and α and β are nonnegative scalar 

parameters satisfying (α + β) < 1. 

and (𝑑𝑖𝑎𝑔(𝑄𝑡))
−½

=  𝑑𝑖𝑎𝑔 (1/√𝑞𝑖𝑖,𝑡 ⋯ ⋯ ⋯ 1/√𝑞𝑛𝑛,𝑡) 

Finally, equation 12 reports the conditional correlation coefficient 𝜌𝑖𝑗,𝑡 between 

two assets i and j: 

𝜌𝑖𝑗,𝑡 =  𝑞𝑖𝑗,𝑡/ √𝑞𝑖𝑖,𝑡 , 𝑞𝑗𝑗,𝑡 , 𝑖, 𝑗 = 1,2, … … … 𝑛, 𝑎𝑛𝑑 𝑖 ≠ 𝑗                               (12) 

𝜌12,𝑡 =  
(1−𝛼−𝛽)𝑞12+𝛼𝜇1,𝑡−1𝜇2,𝑡−1+ 𝛽𝑞12,𝑡−1

√[(1−𝛼−𝛽)𝑞11+𝛼𝜇2
1,𝑡−1+𝛽𝑞11,𝑡−1]+ √[(1−𝛼−𝛽)𝑞22+𝛼𝜇2

2,𝑡−1+𝛽𝑞22,𝑡−1]

            (13) 

According to several authors (e.g., Engle and Sheppard, 2001 and Engle, 2002) 

the T- DCC model can be estimated using a two-stage approach to maximise the log-

likelihood function. Let θ denote the parameters in Dt and Φ the parameters in Rt, and 

then the log-likelihood process can be reported as: 
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𝐼𝑡(θ, Φ) =  [−1

2
∑ (𝑛log(2𝜋) + log|𝐷𝑡|2 + 𝜀′

𝑡𝐷−2𝜀𝑡)𝑇
𝑡=1 ]  

 + [−1

2
∑ (log(2𝜋) + log|𝑅𝑡| + 𝜇𝑡𝑅𝑡

−1𝜇𝑡 − 𝜇𝑡𝜇𝑡)𝑇
𝑡=1 ]                      (14)    

The volatility component of the likelihood function in Equation (14) is the sum 

of individual GARCH likelihoods. In the first step, the log-likelihood function can be 

maximised over the parameter in Dt. Considering the estimated parameters from this 

step, the correlation component of the likelihood function (the second portion of 

Equation 14) may be maximised in the Step two to estimate the correlation 

coefficients. In particular, the conditional variance of returns is determined only by 

previous squared returns, which might lead to the exclusion of volatility transmission. 

Similarly, the DCC model drastically limits the feedback impact of prior volatilities or 

squared returns on correlations. This method permits cross-border transmission to 

fluctuate over time. The Engle and Korner (1995) model is used in this work to capture 

volatility transmission, while the DCC model is used to assess the dynamic conditional 

correlation. 

Employing both BEKK GARCH and multivariate DCC GARCH models in a 

study provides a greater informational advantage. First, the estimates of BEKK 

GARCH reveal the magnitude of volatility transmission between the two series. 

Second, the estimates confirm the direction of volatility transmission, i.e., 

unidirectional or bi-directional. This also gives us the source of volatility transmission, 

in terms of net transmitter and net receiver of volatility. Even though the results of 

BEKK give us the estimates of the transmission of volatility (covariance) and the 

persistence of volatility, the time-varying strength of the relation between the two 

series (correlation) is given by the estimates of DCC GARCH. The strength of 

association between two or more vegetable prices is time varying. The result of 

multivariate DCC estimates gives us a detailed idea about the same, while the 

specifics like direction and source are given by estimates of BEKK. Both models, when 

used simultaneously can offer a comprehensive assessment of the degree of 

integration of two or more price series.       

We also study conditional correlation dynamics into a time varying asymmetric 

framework, applying the technique of AG-DCC model developed by Cappiello et al. 

(2006) to provide a more robust analysis of spillover. 

𝑄𝑡 = (𝑃 − 𝐴′𝑃𝐴 − 𝐵′𝑃𝐵 − 𝐺′𝑁𝐺) + 𝐴′𝜀𝑡−1𝜀𝑡−1
′ 𝐴 + 𝐺′𝑛𝑡−1𝑛𝑡−1

′ 𝐺 + 𝐵′𝑄𝑡−1𝐵)      (15)  

Here 𝐴, 𝐵 and 𝐺 are k × k parameter matrices, 𝑛𝑡 = 𝐼[𝜀𝑡 < 0] ◦  𝜀𝑡 (𝐼[•] is a k*1 

indicator function which takes on value 1 if, the argument is true or else 0, while “◦” 

indicates the Hadamard product) and 𝑁 = 𝐸[𝑛𝑡𝑛𝑡
′ ]. Eq. (15) is the AG-DCC model. In 

order the 𝑄𝑡 to be positive definite for all possible realisations, the intercept, 𝑃 −
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𝐴′𝑃𝐴 − 𝐵′𝑃𝐵 − 𝐺′𝑁𝐺 must be positive semi-definite and the initial covariance matrix 

𝑄0 positive definite. 

 

6. Empirical Analysis 

The study assesses the interdependence of TOP (Tomato, Onion and Potato) 

price returns using the approach described in the preceding section. The study 

employs the complete T-BEKK model and Dynamic Conditional Correlation (T-DCC) 

specification to explain market interrelationships, volatility transmission, and time 

changing dependencies across these key vegetable markets utilising daily data 

frequencies.  

The long sample period from January 2011 to March 2021 allows us to 

investigate if the patterns of volatility between vegetable markets have changed in the 

recent years. The BEKK GARCH approach is used to examine the dependency among 

TOP prices. This methodology is used to answer two questions. First, whether there 

is evidence of volatility transmission among TOP price returns, and second, whether 

there is volatility transmission between retail and wholesale prices for all three 

vegetables, as well as the direction of volatility transmission. Furthermore, the study 

used DCC models to study the temporal development of interdependencies 

(conditional correlations) and volatility dynamics among TOP price returns in both 

wholesale and retail markets. 

The methodology used in this study is consistent with a few recent studies, viz., 

Hernandez et al., 2014 and Gardebroek and Hernandez, 2013. Gardebroek and 

Hernandez (2013) used typical complete BEKK and DCC models to examine volatility 

interactions among weekly, ethanol, crude oil and US maize prices and studied if 

volatility in energy markets increases price volatility in corn markets. 

In line with our objectives, we present the estimated results in the following 

manner: first, the centre-wise volatility behaviour for the three vegetables, followed by 

the cross-vegetable volatility spill over analysis and the transmission of volatility across 

the supply chain, and finally, we check for time varying correlation structure and 

asymmetric transmissions, if any. 

6.1 Centre-wise Analysis 

 Since the all-India prices are an aggregate of centre-specific prices, we begin 

by examining volatility behaviour in some of the centres as specified in the preceding 

section. We examine the centre-wise return of retail prices for each of the three 

vegetables. In the case of onion and potato, the mean for each centre is close to zero, 

indicating that there is variability on both sides (Tables 3, 4 and 5). We fitted GARCH 
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models for each centre to describe its volatility since there is evidence of volatility 

clustering and fat tails in the distribution of all-India return series (which is the average 

of the centre-wise prices), showing the presence of heteroscedasticity.  

The total of ARCH and GARCH terms ( and ) in all three vegetables is closer 

to one for majority of the centres, demonstrating volatility persistence. For onion, the 

ARCH and GARCH terms are significant in all of the centres. This means that the 

current volatility of monthly retail price returns may be explained by long-term volatility. 

As positive and negative shocks may not always have the same influence on prices, 

we used EGARCH models to describe the centre-wise volatility.  

Table 3: Onion Retail Prices Return Series 

  Ahme-
dabad 

Bhopal 
Bhuba-
neswar 

Chen-
nai 

Delhi 
Guwa-

hati 
Hyde-
rabad 

Jaipur Kolkata 
Luck-

now 
Mum-

bai 
Shimla 

Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Median 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Maximum 0.820 0.610 0.330 0.690 0.310 0.330 0.470 0.690 0.410 0.630 0.490 0.510 

Minimum -0.590 -0.610 -0.360 -0.510 -0.210 -0.470 -0.580 -0.760 -0.430 -0.560 -0.520 -0.510 

Std. Dev. 0.040 0.060 0.040 0.080 0.030 0.040 0.050 0.070 0.050 0.050 0.050 0.060 

Skewness 2.840 1.510 0.250 0.260 0.860 -0.230 -0.400 -0.050 -0.080 0.110 0.060 0.600 

Kurtosis 99.540 35.550 14.720 9.550 14.120 27.920 29.190 29.580 17.260 37.400 17.170 23.360 

Jarque-Bera 1224503 139904 18027 5658 16588 81326 89848 92492 26608 154964 26306 54472 

Probability 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Sum -0.130 -0.300 -0.740 -0.820 -0.730 -0.360 -0.640 -0.980 -0.510 -0.460 -0.710 -0.760 

Sum Sq. Dev. 5.730 11.290 4.630 18.640 3.210 4.750 9.060 17.270 8.210 7.220 8.120 9.900 

Observations 3142 3142 3142 3142 3142 3142 3142 3142 3142 3142 3142 3142 

GARCH  

Cst(M) 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 

P value  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

ARCH (α) 0.017 0.044 0.038 0.042 0.075 0.021 0.019 0.050 0.029 0.097 0.127 0.039 

P value  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

GARCH (β) 0.980 0.436 0.923 0.930 0.906 0.946 0.978 0.919 0.933 0.622 0.853 0.907 

P value  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

EGARCH  

Cst(M) -0.103 -2.457 -0.206 -0.331 -0.071 -6.495 -0.079 -0.243 -0.178 -1.908 -0.586 -0.374 

P value  0.000 0.000 0.000 0.000 0.000 -0.010 0.000 0.000 0.000 0.000 0.000 0.000 

ARCH (α) 0.074 0.119 0.071 0.102 0.031 0.010 0.063 0.116 0.064 0.255 0.230 0.121 

P value  0.000 0.000 0.000 0.000 0.000 -0.380 0.000 0.000 0.000 0.000 0.000 0.000 

EGARCH (θ1) 0.159 0.030 0.107 -0.046 0.232 0.010 0.042 0.004 -0.075 -0.081 0.080 0.005 

P value  0.000 -0.030 0.000 -0.010 0.000 -0.380 0.000 -0.440 0.000 0.000 0.000 -0.600 

EGARCH (θ2) -0.100 0.026 -0.093 0.015 -0.199 0.010 -0.012 0.033 0.105 0.246 -0.137 0.011 

P value  0.000 -0.030 0.000 -0.040 0.000 -0.190 0.000 0.000 0.000 0.000 0.000 -0.260 

GARCH (β) 0.987 0.570 0.973 0.947 0.992 0.010 0.990 0.962 0.974 0.702 0.927 0.943 

 P value  0.000 0.000 0.000 0.000 0.000 -0.980 0.000 0.000 0.000 0.000 0.000 0.000 

Source: Authors’ calculations. 

For onion, potato, and tomato, the majority of the GARCH factors are 

significant, showing a dependency on prior volatility, and hence, the persistence in 

conditional volatility. ARCH coefficients are also substantial, emphasising the effect of 

previous shocks. The EGARCH coefficient is statistically significant, indicating the 

presence of asymmetry in majority of the onion, potato, and tomato centres. The 

asymmetry coefficient (θ1) is positive, indicating that positive residuals increase the 
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variance more than negative residuals, showing that positive price shocks are more 

disruptive than the negative ones. 

Table 4: Potato Retail Prices Return Series 

  Ahme-

dabad 
Bhopal 

Bhuba-

neswar 

Chen-

nai 
Delhi 

Guwa-

hati 

Hyde-

rabad 
Jaipur Kolkata 

Luck-

now 

Mum-

bai 
Shimla 

Mean 0.001 0.001 0.001 0.003 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.003 

Median 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Maximum 1.060 0.667 0.670 0.670 0.410 0.880 0.780 0.670 0.440 0.880 0.380 1.000 

Minimum -0.640 -0.500 -0.500 -0.440 -0.200 -0.390 -0.480 -0.380 -0.430 -0.560 -0.390 -0.550 

Std. Dev. 0.040 0.050 0.050 0.070 0.030 0.040 0.050 0.050 0.040 0.050 0.040 0.070 

Skewness 6.170 3.730 1.760 1.190 1.460 5.390 2.800 2.670 1.200 3.310 0.380 3.790 

Kurtosis 170.500 59.720 41.860 14.740 25.270 110.950 61.320 39.420 39.370 77.140 15.890 52.790 

Jarque-Bera 3690799 428115 199207 18784 65977 1539923 449147 177249 173837 724909 21830 331826 

Probability 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Sum 3.310 4.320 3.830 7.890 2.030 3.230 3.560 4.850 2.860 3.930 2.640 8.280 

Sum Sq. Dev. 6.540 7.640 7.030 15.580 3.240 5.850 7.270 9.150 4.610 7.220 4.690 16.620 

Observations 3140 3140 3140 3140 3140 3140 3140 3140 3140 3140 3140 3140 

GARCH 

Cst(M) 0.000 0.002 0.002 0.002 0.000 0.002 0.000 0.002 0.000 0.001 0.000 0.003 

P value -0.260  0.001  -0.006 -0.026 -0.070 -0.010 -0.320 -0.010 -0.200 -0.060 -0.250 0.000 

ARCH (α) 0.093 0.047 0.076 0.015 0.050 0.033 0.044 0.103 0.036 0.049 0.073 0.107 

P value -0.020 -0.290 -0.020 0.000 0.000 -0.180 0.000 0.000 0.000 -0.190 -0.030 0.000 

GARCH (β) 0.813 0.850 0.811 0.979 0.923 0.892 0.949 0.764 0.952 0.554 0.911 0.684 

P value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.040 0.000 0.000 

EGARCH 

Cst(M)  -0.173 0.002 0.002 0.006  -0.456 0.008 0.005 0.005 0.001 0.001 0.002 0.005 

P value  0.000 -0.050 -0.010 0.000  0.00 -0.130 -0.150 -0.030 -0.190 -0.030 0.000 -0.040 

ARCH (α) 0.0831 -0.110 -0.194 -0.302  0.1632 -0.548 -0.271 -0.486 0.054 -1.850 -0.478 1.035 

P value  0.000 -0.820 -0.660 -0.315  0.00 -0.158 -0.235 0.000 -0.940 -0.430 0.000 -0.570 

EGARCH (θ1)  0.161 0.030 0.053 -0.068  -0.079 
 

-0.273 -0.106 -0.154 0.036 -0.116 -0.014 -0.115 

P value  0.000 -0.710 -0.320 -0.120  0.00 -0.380 -0.080 -0.050 -0.610 -0.410 -0.740 -0.350 

EGARCH (θ2) -0.210 0.168 0.165 0.141  0.0836 0.233 0.181 0.265 0.166 -0.008 0.272 0.059 

P value  0.000 -0.160 0.000 0.000  0.00 -0.440 0.000 0.000 0.000 -0.930 0.000 -0.370 

GARCH (β)  0.976  0.671 0.825 0.948 0.943  0.955 0.976 0.871 0.658 0.485 0.944 0.867 

P value  0.000 -0.020 0.000 0.000  0.00  0.000 0.000 0.000 -0.110 0.000 0.000 0.000 

Source: Authors’ calculations. 

Table 5: Tomato Retail Prices Return Series 

 Ahme-
dabad 

Bhopal 
Bhuba-
neswar 

Chennai Delhi 
Guwa-

hati 
Hyde-
rabad 

Kolkata 
Luck-

now 
Mum-

bai 
Shimla 

Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Median 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Maximum 1.25 1.07 1.14 1.16 0.93 0.72 0.92 0.85 0.85 0.57 0.69 

Minimum -1.02 -0.62 -0.69 -0.92 -0.36 -0.47 -0.69 -0.63 -0.63 -0.29 -0.79 

Std. Dev. 0.06 0.08 0.12 0.12 0.05 0.05 0.08 0.08 0.08 0.06 0.11 

Skewness 3.94 2.04 0.59 0.49 2.65 1.69 0.70 0.60 0.60 0.80 0.19 

Kurtosis 185.50 40.74 10.47 10.65 44.41 64.55 27.45 21.48 21.48 11.81 12.39 

Jarque-Bera 4367262 188539 7492.74 7793.34 228155.40 497351 78504.73 44897.24 44897.24 10501.2
3 

11555.33 

Probability 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Sum -0.44 -0.43 -0.57 -0.59 -0.36 0.69 -1.20 0.86 0.86 0.51 -0.36 

Sum Sq. Dev. 10.11 21.37 43.53 48.51 9.14 7.724006 19.14 19.61 19.61 12.04 37.97 

Observations 3142 3142 3142 3142 3142 3142 3142 3142 3142 3142 3142 

GARCH 

Cst(M) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.006 0.001 0.001 0.00 

P value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ARCH (α) 0.0451 0.0257 0.028 0.032 0.116 0.126 0.046 0.03 0.103 0.959 0.061 
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P value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

GARCH (β) 0.727 0.95 0.933 0.962 0.671 0.593 0.94 0.86 0.706 0.25 0.93 

P value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

EGARCH 

Cst(M) -1.171 -0.125 -0.451 -0.166 -1.476 -0.432 0.007 -0.24 -0.262 -0.302 -0.335 

P value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ARCH (α) 0.081 0.072 0.092 -0.087 0.214 0.003 0 0.068 0.105 0.116 0.185 

P value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

EGARCH (θ1) 0.0205 0.08 -0.1 -0.01 0.12 -0.12 0.009 0.089 0.009 0.008 0.03 

P value 0.10 0.14 0.00 0.40 0.00 0.00 0.00 0.00 0.02 0.00 0.054 

EGARCH (θ2) -0.131 -0.035 0.047 -0.008 -0.0731 0.049 0.008 -0.048 0.0123 0.041 0.056 

P value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0159 0.00 0.0171 

GARCH (β) 0.802 0.979 0.905 0.973 0.768 0.924 0.95 0.957 0.958 0.714 0.945 

P value 
 
 
 
 
 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Source: Authors’ calculations. 

6.2 Horizontal Price Transmission across the three Vegetable Prices (Tomato, Onion 

and Potato) 

The summary statistics of TOP prices based on daily data for both wholesale 

and retail markets are provided in Table 6 (Panels A and B). All series returns are 

computed by calculating the initial differences in the logarithm of the two succeeding 

prices, i.e., 𝑟𝑡 = 𝑙𝑜𝑔 (
𝑃𝑡

𝑃𝑡−1
). The return series of vegetable prices are found to be 

stationary using both the ADF and the Phillips Peron test for unit root (Appendix Table 

A2). 

Table 6A: Summary and Diagnostic Statistics for DCA Vegetable Retail Prices 

DCA Retail Prices Onion Potato Tomato 

 Mean 25.77 18.98 26.64 

 Median 21.05 17.52 23.74 

 Maximum 103.67 46.31 69.65 

 Minimum 10.86 8.50 11.03 

No. of Observations 3167 3167 3167 

Price Return Series (D Ln) 

 Std. Dev. 0.03 0.04 0.05 

 Skewness 0.01 0.12 -0.29 

 Kurtosis 10.12 9.36 17.01 

Sum -0.53 0.39 -0.57 

 Sum Sq. Dev. 2.89 3.91 6.64 

 Jarque-Bera 6695.75*** 5335.448*** 25933.7*** 

ADF TEST -7.91*** -8.05*** -9.16*** 

Heteroskedasticity Test: ARCH  

F-statistic 149.7355*** 355.2837*** 622.6090*** 

Obs*R-squared 143.0559*** 319.5982*** 520.5122*** 

Correlogram of Residuals  

AC (Lag=1) 0.000 -0.07*** -0.022 

AC (Lag=2) 0.021 -0.215*** -0.065*** 

Q stat/ Ljung-Box (5) 105.69*** 181.41*** 58.935*** 

Q stat/ Ljung-Box (10) 387.72*** 410.61*** 221.48*** 

Correlogram of Residuals Squared  

AC (Lag=1) 0.213*** 0.318*** 0.406*** 

AC (Lag=2) 0.1*** 0.152*** 0.037*** 
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Q stat/ Ljung-Box (5) 186.21*** 395.96*** 529.39*** 

Q stat/ Ljung-Box (10) 199.69*** 486.54*** 546.77*** 

  Source: Authors’ calculations. 

Table 6B: Summary and Diagnostic Statistics for DCA Vegetable Wholesale 

Prices 

DCA Wholesale Prices Onion Potato Tomato 

 Mean 20.67 14.77 20.63 

 Median 16.18 13.45 18.00 

 Maximum 90.50 40.04 58.55 

 Minimum 7.86 6.05 7.65 

No. of Observations 3167 3167 3167 

Price Return Series (D Ln) 

 Std. Dev. 0.03 0.04 0.05 

 Skewness 0.19 -0.04 0.27 

 Kurtosis 8.98 18.56 6.45 

Sum -0.63 0.30 -0.71 

 Sum Sq. Dev. 3.71 6.27 7.00 

 Jarque-Bera 4743.228*** 31922.69*** 1606.394*** 

ADF TEST -7.93*** -11.89*** -9.60*** 

Heteroskedasticity Test: ARCH 

F-statistic 107.3886*** 36.15329*** 151.2641*** 

Obs*R-squared 103.9269*** 35.76721*** 144.4496*** 

Correlogram of Residuals 

AC (Lag=1) -0.005 -0.050** -0.009 

AC (Lag=2) -0.018 -0.181*** -0.038* 

Q stat/ Ljung-Box (5) 65.105*** 126.15*** 43.795*** 

Q stat/ Ljung-Box (10) 340.34*** 283.87*** 285.39*** 

Correlogram of Residuals Squared 

AC (Lag=1) 0.181*** 0.106*** 0.214*** 

AC (Lag=2) 0.117*** 0.035*** 0.059*** 

Q stat/ Ljung-Box (5) 152.22*** 39.675*** 160.88*** 

Q stat/ Ljung-Box (10) 164.53*** 45.873*** 220.71*** 

    Source: Authors’ calculations. 
 

Tables 7A and 7B show the BEKK model's estimation results for TOP retail and 

wholesale prices, respectively. The variance-covariance matrix formulation allows us 

to examine the direction, size, and persistence of volatility transmission across prices. 

In matrix notation, the volatility of onion prices is 1, potato price volatility is 2, and 

tomato price volatility is 3. Thus, price volatility transmission from onion to potato is (1, 

2), price volatility transmission from potato to tomato is (2, 3), and price volatility 

transmission from onion to tomato is (1, 3). The conditional mean equation coefficients 

are represented by the symbol  𝛾𝑖 in Table 7. Both retail and wholesale vegetable 

prices are statistically significant.  

The parametric matrix C represents the statistically relevant constant 

conditional variance-covariance coefficients for TOP markets. For all three vegetables, 

the impacts of lagged innovation on own return volatility and cross volatility, are 
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substantial at the one per cent level of significance, showing the ARCH effects. At the 

same time, the diagonal coefficients represent volatility persistence, i.e., the reliance 

of volatility in market i on previous swings. It demonstrates the GARCH effects.  

The study examines the impact of previous volatility on present volatility across 

markets in the scenario of cross-vegetables price transmission (horizontal 

transmission). The diagonal coefficients, i = 1, 2, 3, in the conditional variance-

covariance equation represent own-volatility transmission, i.e., the influence of own 

delayed innovations on the current conditional return volatility in the market i. The off-

diagonal coefficients 𝑎𝑖𝑗 and 𝑏𝑖𝑗 measure cross-market transmission, such as shocks 

and the persistence of volatility between markets. The coefficients 𝑎𝑖𝑗 represent the 

immediate effects of lagged innovations originating in the market i on current 

conditional volatility in market j, which are minor for all three vegetables in both retail 

and wholesale marketplaces.  

Table 7A: Vegetables Retail Return Estimation Results of BEKK (1, 1) 

for the Period 2011-2021 

Coefficients Onion Potato Tomato 

 i=1 i=2 i=3 

Conditional Mean Equation (Eq) 

ϒ𝑖 -0.0015*** -0.0008** -0.0014*** 

(0.000) (0.025) (0.005) 

Conditional Variance Covariance Equation Parameter Matrix C (Eq) 

Onion (𝐶1𝑖) 
0.0111*** 
(0.000) 

  

Potato (𝐶2𝑖) 
0.0038*** 
(0.000) 

0.0034*** 
(0.000) 

 

Tomato (𝐶3𝑖) 
0.0033*** 
(0.003) 

-0.0034*** 
(0.008) 

0.0082*** 
(0.000) 

Parameter Matrix A (Eq) 

 Onion (𝑎𝑖1) Potato (𝑎𝑖2) Tomato (𝑎𝑖3) 

Onion (𝑎1𝑖) 
0.4840*** 
(0.000) 

0.0213 
(0.352) 

0.0273 
(0.460) 

Potato (𝑎2𝑖) 
0.0018 
(0.912) 

0.3206*** 
(0.000) 

0.0174 
(0.476) 

Tomato (𝑎3𝑖) 
-0.0196 
(0.222) 

-0.0166 
(0.302) 

0.3960*** 
(0.000) 

Parameter Matrix B (Eq) 

 Onion (𝑏𝑖1) Potato (𝑏𝑖2) Tomato (𝑏𝑖3) 

Onion (𝑏1𝑖) 
0.8011*** 
(0.000) 

-0.0432*** 
(0.002) 

-0.0261 
(0.275) 

Potato (𝑏2𝑖) 
0.0151** 
(0.048) 

0.9551*** 
(0.000) 

0.0105 
(0.268) 

Tomato (𝑏3𝑖) 
0.0312*** 
(0.001) 

0.0185*** 
(0.009) 

0.9201*** 
(0.000) 

Note: For coefficients of the parameter matrix C, A and B, p-values are in the parenthesis. 
C is a triangular matrix. The symbols *, ** and *** denote the corresponding parameter is equal 
to zero at 10%, 5% and, 1% significance levels, respectively for rejection of the null hypothesis. 
Source: Authors’ calculations. 
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In Table 7A, the diagonal parameters in both the matrix A and B: 𝑎11,𝑎22,𝑎33 and 

𝑏11, 𝑏22, 𝑏33  are all positive and statistically significant at 1 per cent, it shows all the 

three vegetables have strong ARCH and GARCH effects, it also captures the effects 

of previous shocks and historical volatility to current conditional volatility. On the other 

hand, off-diagonal elements of matrices A (e.g. 𝑎12,𝑎13,𝑎21) and B 

(𝑏12, 𝑏13, 𝑏21) measure the volatility spillovers across the market. 

There is no cross transmission of innovations originating in any one vegetable 

retail prices to other two retail vegetable prices as shown in Table 7A in parameter 

matrix A. In the case of retail prices, the shock spill over is not statistically significant. 

Thus, it shows that there is no spill over of return shocks in the case of retail prices 

except own return shocks. Additionally, when compared to GARCH coefficients, the 

stated ARCH coefficients are rather small in magnitude. This shows that the 

conditional volatility of retail prices fluctuates gradually over time rather than changing 

quickly in response to a shock. It implies that, in contrast to their own shocks, their 

historical volatility values have a more significant influence in predicting their future 

volatility. 

According to the GARCH parameters reported in Table 7A in parameter matrix 

B, these shocks have a high persistence. These markets may be linked directly by 

conditional variance and indirectly through conditional covariance. To adequately 

analyse price interactions, we must account for both direct and indirect impacts. As is 

typical in these models, the estimated cross effects are often less than the own lag 

effects.  

There is bidirectional volatility spillover in the daily retail prices of onion to the 

potato prices and vice versa. The magnitude of volatility transmission from the onion 

price to the potato price is (−) 4.32 per cent, whereas the volatility transmission from 

potato to onion is 1.51 per cent. So, the empirical estimates indicate that the magnitude 

of volatility spillover from potato prices to onion prices is higher than onion prices to 

potato prices.  

The transmission from tomato to potato retail prices and tomato to onion retail 

prices is unidirectional (Table 7 A). A one-per cent increase in the conditional volatility 

of tomato retail prices appears to result in a 3.12 per cent rise in the volatility of onion 

retail prices but only a 1.85 per cent increase in potato retail prices. So, the inference 

from the empirical analysis is that magnitude of tomato retail prices volatility spill over 

have more impact in the case of onion retail prices compared to potato retail prices as 

inferred from Table 7A.  
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In Table 7B, the diagonal parameters 𝑎11,𝑎22,𝑎33 and 𝑏11, 𝑏22, 𝑏33  are all positive 

and statistically significant, showing a robust transmission of own innovation and 

volatility shocks throughout the conditional variance for all three vegetables. 

As shown in Table 7B in Parameter matrix A, in the wholesale prices, the impact 

of shock spill over from tomato to onion prices is unidirectional and negatively 

significant. This implies that a 1 per cent increase in shock in tomato returns results in 

a 5.46 per cent decrease in wholesale onion price return volatility (Table 7B). There is 

no transmission of innovations originating in any of the other two vegetable wholesale 

prices except tomato wholesale prices to onion wholesale prices. The insignificant 

spillover effects between the returns of the potato and onion wholesale prices 

suggests weak integration of the above prices.  

Table 7B: Vegetables Wholesale Return Estimation Results of  

BEKK (1, 1) for the Period 2011-2021 

Coefficients Onion Potato Tomato 

 i=1 i=2 i=3 

Conditional Mean Equation (Eq) 

ϒ𝑖 -0.0012*** -0.0006 -0.0015*** 

(0.001) (0.168) (0.009) 

Conditional Variance Covariance Equation Parameter Matrix C (Eq) 

Onion (𝐶1𝑖) 
0.0107*** 
(0.000) 

  

Potato (𝐶2𝑖) 
0.0044*** 
(0.000) 

0.0046*** 
(0.000) 

 

Tomato (𝐶3𝑖) 
0.0018 
(0.235) 

-0.0027 
(0.131) 

0.0100*** 
(0.000) 

Parameter Matrix A (Eq) 

 Onion (𝑎𝑖1) Potato (𝑎𝑖2) Tomato (𝑎𝑖3) 

Onion (𝑎1𝑖) 
0.4086*** 
(0.000) 

0.0262 
(0.356) 

-0.0206 
(0.544) 

Potato (𝑎2𝑖) 
-0.0058 
(0.732) 

0.3156*** 
(0.000) 

0.0233 
(0.348) 

Tomato (𝑎3𝑖) 
-0.0546*** 

(0.009) 
-0.0230 
(0.192) 

0.3455*** 
(0.000) 

Parameter Matrix B (Eq) 

 Onion (𝑏𝑖1) Potato (𝑏𝑖2) Tomato (𝑏𝑖3) 

Onion (𝑏1𝑖) 
0.8638*** 
(0.000) 

-0.0351* 
(0.089) 

0.0011 
(0.952) 

Potato (𝑏2𝑖) 
0.0042 
(0.527) 

0.9511* 
(0.000) 

0.0066 
(0.433) 

Tomato (𝑏3𝑖) 
0.0327** 
(0.011) 

0.0161* 
(0.070) 

-0.9288*** 
(0.000) 

Note: For coefficients of the parameter matrix C, A and B, p-values are in the parenthesis. 
C is a triangular matrix. The symbols *, ** and *** denote the corresponding parameter is equal 
to zero at 10%, 5% and, 1% significance levels, respectively for rejection of the null hypothesis. 
Source: Authors’ calculations. 
 

The diagonal coefficients 𝑏𝑖𝑖 in the parameter matrix reported in Table 7B 

represents the reliance of volatility in prices i on its historical volatility, and the 
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estimates imply that own innovations (information shocks) have a significant direct 

influence on the associated conditional return volatility in the vegetable prices, as 

implied by the coefficients' statistical significance. Concerning the dynamics of cross-

volatility transmission across the vegetable prices, the off-diagonal coefficients 𝑏𝑖𝑗 

represent the direct dependency of volatility in price j on volatility in price i.  

There is unidirectional volatility spillover in the daily wholesale prices of onion 

to the potato price. The magnitude of volatility transmission from the onion price to the 

potato price is (−) 3.51 per cent. 

 The volatility spill over from tomato wholesale price to onion wholesale price is 

3.27 per cent. A one-per cent increase in the conditional volatility of tomato wholesale 

prices appears to result in a 3.27 per cent rise in the volatility of onion wholesale prices. 

A one-per cent increase in the conditional volatility of tomato wholesale prices appears 

to result in a 1.61 per cent rise in the volatility of potato wholesale prices. Positive sign 

of the coefficients indicates that a higher tomato wholesale prices will boost the 

markets of onion wholesale prices. 

 The findings indicate the prevalence of volatility transmission among TOP 

prices in India reflecting the role of common driving factors and some degree of 

substitutability and complimentary among these vegetables. These common factors 

include common supply shocks- extreme weather shocks (viz. cyclones, monsoon 

failure, unseasonal rains, droughts, heatwaves etc), hoarding, pest attacks, post-

harvest losses and strikes/protests as well as increase in input costs. The TOP prices 

are essentially interrelated because these vegetables have similar input costs, 

compete for limited natural resources, and share common market information because 

of which all the three crops face similar issues with respect to price volatility.  

The presence of this volatility transmission among TOP prices in India 

demonstrates the necessity to reduce volatility in the prices of these vegetables and 

undertake targeted policy intervention. 

6.3 Vertical Transmission (Wholesale and Retail Prices) in case of Tomato, Onion 

and Tomato 

Tables 8A, 8B and 8C represent the bivariate GARCH estimates for market 

linkages across the supply chain (wholesale and retail prices) to assess vertical 

transmission of volatility in the case of onion, potato and tomato prices, respectively. 

The connection between the retail and wholesale prices can be explained in terms of 

the magnitude and persistence of shock originating in one market and transmitting to 

the other market known as vertical price transmission. The diagonal coefficients 

capture own volatility transmission for each vegetable prices, while the off-diagonal 
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coefficients capture the effect of lagged innovation in the retail prices on the wholesale 

prices, which is found to be significant in the case of all three vegetables prices. 

In the case of onion prices, while the transmission of volatility from wholesale 

to the retail prices is significant, lagged innovation in wholesale prices does not 

transcend to the retail prices.  

The potato prices show the transmission of volatility from retail to wholesale 

prices and vice versa. Potato is relatively more storable compared to tomato and 

onion. Whenever wholesale price increases, it usually spills over to retail prices. But 

when retail price spikes because of any issue in the supply chain, the stored potato 

prices also respond to that shock. It could be because of the storability of potato that 

we see this bidirectional relation between its retail and wholesale prices. 

 In the case of tomato, the transmission of volatility from wholesale to the retail 

market is significant, but negative as evident from GARCH coefficients. However, from 

the significant ARCH coefficients, it is observed that lagged innovations in both retail 

and wholesale prices for both potato and tomato prices impact each other’s returns in 

the short run. Interestingly, the strong significance of both ARCH and GARCH 

coefficients for potato prices show that the returns of retail and wholesale prices are 

not only affected by their own lagged innovations but also by each other’s lagged 

volatility fluctuations. As a group, potato retail and wholesale prices show the 

maximum covariance both in short- and long- run. In fact, the magnitude of covariance, 

is the highest for potato wholesale prices. 

Table 8A: Vegetable Cross-Market (Onion Retail and Wholesale Prices) BEKK 

(1, 1) Estimation Results for the Period 2011-2021 

Coefficients Onion Retail Onion Wholesale 

 i=1 i=2 

Conditional Mean Equation (Eq) 

ϒ0 -0.0007** -0.0005 

(0.031) (0.174) 

Conditional Variance Covariance Equation Parameter Matrix C (Eq) 

Onion Retail (𝑐1𝑖) 
0.0063*** 
(0.000) 

 

Onion Wholesale (𝑐2𝑖) 
0.0142*** 
(0.000) 

0.0000 
(0.999) 

Parameter Matrix A (Eq) 

 Onion Retail (𝑎𝑖1) Onion Wholesale (𝑎𝑖2) 

Onion Retail (𝑎1𝑖) 
0.1242*** 
(0.000) 

-1.1786*** 
(0.000) 

Onion Wholesale (𝑎2𝑖) 
-0.0299 
(0.148) 

0.0473*** 
(0.009) 

Parameter Matrix B (Eq) 

 Onion Retail (𝑏𝑖1) Onion Wholesale (𝑏𝑖2) 

Onion Retail (𝑏1𝑖) 
0.9550*** 
(0.000) 

-0.0073 
(0.798) 
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Onion Wholesale (𝑏2𝑖) 
-0.0853*** 

(0.003) 
-0.0351 
(0.320) 

Note: For coefficients of the parameter matrix C, A and B, p-values are in the parenthesis. 
C is a triangular matrix. The symbols *, ** and *** denote the corresponding parameter is equal 
to zero at 10%, 5% and, 1% significance levels, respectively for rejection of the null hypothesis. 
Source: Authors’ calculations. 

 
Table 8B: Vegetable Cross-Market (Potato Retail and Wholesale Prices)  

BEKK (1, 1) Estimation Results for the Period 2011-2021 
Coefficients Potato Retail Potato Wholesale 

 i=1 i=2 

Conditional Mean Equation (Eq) 

ϒ0 0.0011* 0.0013* 

(0.000) (0.000) 

Conditional Variance Covariance Equation Parameter Matrix C (Eq) 

Potato Retail (𝐶1𝑖) 
0.0007 
(0.120) 

 

Potato Wholesale (𝐶2𝑖) 
0.0137*** 
(0.000) 

-0.0000 
(0.999) 

Parameter Matrix A (Eq) 

 Potato Retail (𝑎𝑖1) Potato Wholesale (𝑎𝑖2) 

Potato Retail (𝑎1𝑖) 
0.4442*** 
(0.000) 

-1.3159*** 
(0.000) 

Potato Wholesale (𝑎2𝑖) 
0.0418*** 
(0.001) 

0.1038*** 
(0.000) 

Parameter Matrix B (Eq) 

 Potato Retail (𝑏𝑖1) Potato Wholesale (𝑏𝑖2) 

Potato Retail (𝑏1𝑖) 
0.9475*** 
(0.000) 

0.1351*** 
(0.000) 

Potato Wholesale (𝑏2𝑖) 
0.1719*** 
(0.000) 

-0.1262*** 
(0.000) 

Note: For coefficients of the parameter matrix C, A and B, p-values are in the parenthesis. 
C is a triangular matrix. The symbols *, ** and *** denote the corresponding parameter is equal 
to zero at 10%, 5% and, 1% significance levels, respectively for rejection of the null hypothesis. 
Source: Authors’ calculations. 

 

Table 8C: Vegetable Cross-Market (Tomato Retail and Wholesale Prices)  

BEKK (1, 1) Estimation Results for the Period 2011-2021 

Coefficients Tomato Retail Tomato Wholesale 

 i=1 i=2 

Conditional Mean Equation (Eq) 

ϒ0 -0.0012** -0.0015*** 

(0.019) (0.009) 

Conditional Variance Covariance Equation Parameter Matrix C (Eq) 

Tomato Retail (𝐶1𝑖) 
0.0084*** 
(0.000) 

 

Tomato Wholesale (𝐶2𝑖) 
0.0219*** 
(0.000) 

0.0000 
(0.999) 

Parameter Matrix A (Eq) 

 Tomato Retail (𝑎𝑖1) Tomato Wholesale (𝑎𝑖2) 

Tomato Retail (𝑎1𝑖) 
0.1172*** 
(0.000) 

-1.1080*** 
(0.000) 
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Tomato Wholesale (𝑎2𝑖) 
-0.0568*** 

(0.000) 
0.1052*** 
(0.000) 

Parameter Matrix B (Eq) 

 Tomato Retail (𝑏𝑖1) Tomato Wholesale (𝑏𝑖2) 

Tomato Retail (𝑏1𝑖) 
0.9588*** 
(0.000) 

0.0066 
(0.783) 

Tomato Wholesale (𝑏2𝑖) 
-0.1056*** 

(0.000) 
0.0290 
(0.609) 

Note: For coefficients of the parameter matrix C, A and B, p-values are in the parenthesis. 
C is a triangular matrix. The symbols *, ** and *** denote the corresponding parameter is equal 
to zero at 10%, 5% and, 1% significance levels, respectively for rejection of the null hypothesis. 
Source: Authors’ calculations. 

 
6.4 Time Varying Dynamic Conditional Correlation Analysis (DCC and ADCC) 

The analysis of dynamic conditional correlation of vegetable returns is another 

goal of this study. To allow for a time-varying correlation structure, the multivariate 

DCC model is applied to all three vegetables. The mean equation is represented by 

parameter ϒ0, whereas the conditional variance of the above-mentioned vegetables is 

represented by parameters α1, β1 and ω1. All the variables are highly significant and 

positive. The importance of mean equation parameter ϒ0 demonstrates the 

dependency of current returns on delayed returns. The conditional heteroskedasticity 

in the time series is shown by the variance equation parameters α1, β1 and ω1 from 

the multivariate DCC analysis. The GARCH (1, 1) parameters are extremely 

significant, supporting the time-varying variance-covariance process and bolstering 

the DCC model utilised in the analysis. 

Table 9A: Vegetable Retail Prices DCC Model Estimation Results  

for the period 2011-2021 

Coefficients Onion Potato Tomato 

 i=1 i=2 i=3 

Conditional Mean Equation (Eq) 

ϒ0 -0.0012*** -0.0005 -0.0013** 

(0.000) (0.120) (0.010) 

Conditional Variance Covariance Equation Parameter Matrix C (Eq) 

 Onion (𝐶1) Potato (𝐶2) Tomato (𝐶3) 

𝜔1 
0.0001*** 
(0.000) 

0.0005*** 
(0.000) 

0.0002*** 
(0.000) 

Parameter Matrix A (Eq) 

 Onion (𝑎1) Potato (𝑎2) Tomato (𝑎3) 

𝛼1 
0.3374*** 
(0.000) 

0.5223*** 
(0.000) 

0.2657*** 
(0.000) 

Parameter Matrix B (Eq) 

 Onion (𝑏1) Potato (𝑏2) Tomato (𝑏3) 

β1 
0.6017*** 
(0.000) 

0.1784*** 
(0.000) 

0.7163*** 
(0.000) 

Asymmetric Information 

DCC A δ 
  0.1346*** 

(0.000) 
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DCC B ν 
  0.7627*** 

(0.000) 

Note: For coefficients of the parameter matrix C, A and B, p-values are in the parenthesis. 
C is a triangular matrix. The symbols *, ** and *** denote the corresponding parameter is equal 
to zero at 10%, 5% and, 1% significance levels, respectively for rejection of the null hypothesis. 
Source: Authors’ calculations. 

 
Table 9B: Vegetable Wholesale Prices DCC Model Estimation Results  

for the period 2011-2021 

Coefficients Onion Potato Tomato 

 i=1 i=2 i=3 

Conditional Mean Equation (Eq) 

ϒ0 -0.0012*** -0.0004 -0.0014*** 

(0.000) (0.308) (0.009) 

Conditional Variance Covariance Equation Parameter Matrix C (Eq) 

 Onion (𝐶1) Potato (𝐶2) Tomato (𝐶3) 

𝜔1 
0.0000*** 
(0.000) 

0.0000*** 
(0.000) 

0.0001*** 
(0.000) 

Parameter Matrix A (Eq) 

 Onion (𝑎1) Potato (𝑎2) Tomato (𝑎3) 

𝛼1 
0.1439*** 
(0.000) 

0.1009*** 
(0.000) 

0.1523*** 
(0.000) 

Parameter Matrix B (Eq) 

 Onion (𝑏1) Potato (𝑏2) Tomato (𝑏3) 

β1 
0.8132*** 
(0.000) 

0.9015*** 
(0.000) 

0.8389*** 
(0.000) 

Asymmetric Information 

DCC A δ 
  0.0912*** 

(0.000) 

DCC B ν 
  0.8704*** 

(0.000) 

Note: For coefficients of the parameter matrix C, A and B, p-values are in the parenthesis. 
C is a triangular matrix. The symbols *, ** and *** denote the corresponding parameter is equal 
to zero at 10%, 5% and, 1% significance levels, respectively for rejection of the null hypothesis. 
Source: Authors’ calculations. 

 

In the case of vegetables retail and wholesale returns, all of the coefficients in 

a DCC model are important (Table 9A and 9B). The Wald test rejects the null 

hypothesis that the adjustment parameters are equal to zero at 95 per cent confidence 

level for the estimated conditional variance and covariances defined in the preceding 

equations. The coefficient values in Tables 9A and 9B show that volatility persists 

strongly throughout all series. 

The computed GARCH coefficients for wholesale price return series are 

substantial and near to one, showing that wholesale prices are more persistent than 

retail prices. All (α+β) coefficients are smaller than one, indicating that the 

unconditional variance is limited. The ARCH parameter DCCAδ in the conditional 

correlation equation yields modest, positive, and significant estimates, just as the 

parameters derived from the estimation of the conditional variance process. 
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The GARCH parameters DCCBʋ are big and near to one, suggesting that time-

varying correlation is persistent. Finally, the importance of DCC-GARCH estimates 

(DCCAδ and DCCBʋ) explains why conditional correlations between the three 

vegetables retail and wholesale prices are dynamic and time-varying. It demonstrates 

the presence of dynamic conditional connection among the three vegetables prices 

and is also explored below in detail. 

Table 10A: Vegetable Retail Prices ADCC Model Estimation Results  

for the Period 2011-2021 

Coefficients Onion Potato Tomato 

 i=1 i=2 i=3 

Conditional Mean Equation (Eq) 

ϒ0 -0.0012*** -0.0013*** -0.0005 

(0.000) (0.008) (0.118) 

Conditional Variance Covariance Equation Parameter Matrix C (Eq) 

 Onion (𝐶1) Potato (𝐶2) Tomato (𝐶3) 

𝜔1 
0.0001*** 
(0.000) 

0.0002*** 
(0.000) 

0.0005*** 
(0.000) 

Parameter Matrix A (Eq) 

 Onion (𝑎1) Potato (𝑎2) Tomato (𝑎3) 

𝛼1 
0.3401*** 
(0.000) 

0.2665*** 
(0.000) 

0.5255*** 
(0.000) 

Parameter Matrix B (Eq) 

 Onion (𝑏1) Potato (𝑏2) Tomato (𝑏3) 

β1 
0.5960*** 
(0.000) 

0.7131*** 
(0.000) 

0.1768*** 
(0.000) 

Asymmetric Information 

DCC 1 δ 
  0.1456*** 

(0.000) 

DCC 2 ν 
  0.7553*** 

(0.000) 

DCC 3 π 
  -0.0271 

(0.159) 

Note: For coefficients of the parameter matrix C, A and B, p-values are in the parenthesis. 
C is a triangular matrix. The symbols *, ** and *** denote the corresponding parameter is equal 
to zero at 10%, 5% and, 1% significance levels, respectively for rejection of the null hypothesis. 
Source: Authors’ calculations. 

  
Table 10B: Vegetables Wholesale Prices ADCC Model Estimation Results  

for the Period 2011-2021 

Coefficients Onion Potato Tomato 

 i=1 i=2 i=3 

Conditional Mean Equation (Eq) 

ϒ0 -0.0012*** -0.0004 -0.0014** 

(0.001) (0.321) (0.010) 

Conditional Variance Covariance Equation Parameter Matrix C (Eq) 

 Onion (𝐶1) Potato (𝐶2) Tomato (𝐶3) 

𝜔1 
0.0000*** 
(0.000) 

0.0000*** 
(0.000) 

0.0001*** 
(0.000) 

Parameter Matrix A (Eq) 

 Onion (𝑎1) Potato (𝑎2) Tomato (𝑎3) 
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𝛼1 
0.1437*** 
(0.000) 

0.1007*** 
(0.000) 

0.1522*** 
(0.000) 

Parameter Matrix B (Eq) 

 Onion (𝑏1) Potato (𝑏2) Tomato (𝑏3) 

β1 
0.8136*** 
(0.000) 

0.9017*** 
(0.000) 

0.8390*** 
(0.000) 

Asymmetric Information 

DCC 1 δ 
  0.0905*** 

(0.000) 

DCC 2 ν 
  0.8706*** 

(0.000) 

DCC 3 π 
  0.0018 

(0.8592) 

Note: For coefficients of the parameter matrix C, A and B, p-values are in the parenthesis. 
C is a triangular matrix. The symbols *, ** and *** denote the corresponding parameter is equal 
to zero at 10%, 5% and, 1% significance levels, respectively for rejection of the null hypothesis. 
Source: Authors’ calculations.       

The study also estimates an Asymmetric DCC (ADCC) model, which allows the 

asymmetric effects of positive and negative shocks. Specifically, a DCC model is 

calculated under the assumption that the conditional variance follows Nelson's 

suggested exponential GARCH model (1991). As shown in Tables 10A and 10B, there 

is no indication of asymmetries in conditional volatility at the conventional level, as the 

parameter associated with asymmetry or leverage effects DCC 3 π is not statistically 

significant in the series. So, the study does not find any evidence of a significant 

differential impact of positive or negative price volatility shocks (asymmetric effects) 

across these three vegetables in both retail and wholesale markets. 

 

7. Conclusions and Policy Implications 

This study attempts to comprehend the dynamics of vegetable price volatility in 

India in the context of three key vegetables- tomato, onion and potato. Firstly, it 

analyses how volatility behaves in some of the key centres for each selected 

vegetable. Secondly, it investigates the transmission of volatility across these three 

vegetables known as horizontal volatility transmission. Thirdly, it aims to understand 

the volatility transmission between wholesale and retail prices of these three 

vegetables, called vertical volatility transmission. The study is based on daily DCA 

data covering the period from January 2011 to March 2021. For testing the robustness 

of results of BEKK GARCH volatility spill over, DCC methodology has been applied in 

this study.  

The centre-wise estimation indicates dependency on prior volatility as well as 

persistence in the volatility of retail prices in most centres. Further, the estimates 

indicate the effect of previous shocks and presence of asymmetry in transmission of 

positive and negative shocks in majority of the onion, potato, and tomato centres.  
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The horizontal price transmission of these three vegetables may be analysed 

using conditional variance and conditional covariance. In both retail and wholesale 

markets, there is a unidirectional volatility transmission from tomato prices to those of 

onions and potatoes. This suggests that knowledge about tomato price variations is 

passed along to the pricing of potatoes and onions. Further, the magnitude of volatility 

spillover is greater in the case of tomato to onion prices compared to tomato to potato 

prices reflecting the greater perishability of onions compared to potatoes. Additionally, 

there is an evidence of bidirectional transmission of volatility in the case of potato and 

onion retail prices, demonstrating that the prices of both these commodities interact 

with each other. The wholesale market volatility transmission from potato to onion 

prices is unidirectional.  

The prevalence of volatility transmission in our analysis is the result of market 

integration. The degree of integration between the tomato, onion, and potato markets 

also determines the volatility transmission across these three markets. The extent and 

speed of information flow between prices increase with the degree of integration. This 

essentially is Cournot's (1927) Law of One Price. 

TOP prices are also interrelated because they are substitutes in demand to 

some extent, have similar input costs, compete for limited natural resources, and share 

common market information. Due to this, all the three crops face similar issues with 

respect to price volatility. These vegetables are also susceptible to common supply 

shocks.  

With respect to the vertical transmission, the potato prices exhibit bidirectional 

volatility spillovers i.e., from wholesale to retail prices and vice versa. The spillovers 

from retail to wholesale prices of potato could be attributed to the storability of potato 

as compared to tomato or onion. As a result, volatility in potato retail prices would also 

transcend to potato wholesale prices. In the case of tomato and onion, transmission 

is observed to be unidirectional from wholesale to retail prices. Due to seasonal 

production, weather disturbances and the inelastic nature of demand, onion wholesale 

prices volatility continue to transmit to retail prices despite high onion production. Even 

in the case of tomato where production is well-distributed throughout the year and 

diversified across states, wholesale price fluctuations are passed on to retail prices 

since tomatoes are highly perishable and have insufficient storage facilities. 

Lastly, the study demonstrates a time evolution of dependencies across these 

vegetables. The level of dependencies between retail and wholesale prices of these 

three vegetables is dynamic and time-varying. Furthermore, there is no evidence of a 

differential impact of positive and negative volatility shocks across these three 

vegetables and hence, there is no indication of asymmetric or leverage effects 

between retail and wholesale prices of these vegetables.  
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While this study is one of the first few studies to understand the volatility 

transmission in the case of tomato, onion and potato, there are certain limitations to 

this study which can be addressed in future research. This study does not look at the 

factors affecting volatility transmission in the TOP prices which can be undertaken as 

a part of future research. The potential research for the future could also examine 

volatility transmission in the case of other agricultural commodities like pulses, 

vegetable oils, etc. 

 The results of the study can be beneficial for policymakers in various ways. 

The prevalence of volatility transmission among TOP prices in India demonstrates the 

necessity to reduce volatility in the prices of these vegetables and undertake targeted 

policy interventions. This would entail the implementation of various supply-side 

measures like strengthening of the supply chain, integration of the participants of the 

value chain, development of ample storage facilities and better post-harvest loss 

management. Adoption of climate-smart agriculture practices would also help in 

stabilising prices in the case of supply disruptions due to extreme weather shocks. The 

understanding of the volatility dynamics in TOP prices would also help in managing 

price stability.    
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Appendix 

Table A1: List of Centres3 

NORTH ZONE WEST ZONE EAST ZONE SOUTH ZONE 
NORTH-
EAST ZONE 

Chandigarh Raipur Patna Port Blair Itanagar 

Delhi Durg Bhagalpur Mayabunder Guwahati 

Hisar Ambikapur Purnia Vijaywada Imphal 

Karnal Bilaspur-cg Darbhanga Visakhapatnam Shillong 

Panchkula Jagdalpur Gaya Kurnool Tura 

Gurgaon Panaji Muzzafarpur Tirupathi Jowai 

Shimla Ahmedabad Saran Bengaluru Aizawl 

Mandi Rajkot Munger Dharwad Dimapur 

Dharamshala Surat Saharsa Mangalore Gangtok 

Solan Bhuj Madhubani Mysore Agartala 

Una Bhopal Rohtas (Sasaram) Bengaluru (east range)   

Bilaspur-hp Indore Motihari Belagavi   

Srinagar Gwalior Samastipur Kalaburagi   

Jammu Jabalpur Katihar Tumakuru   

Poonch Rewa Araria Bellary   

Amritsar Sagar Nawada Dhavanagere   

Ludhiana Jhabua Khagaria Shivamogga   

Bathinda Hoshangabad Ranchi Vijayapur   

Lucknow Shahdol Gumla T. Puram   

Kanpur Ujjain Sahibganj Ernakulam   

Varanasi Morena Bokaro Kozhikode   

Agra Mumbai Lohardaga Thrissur   

Jhansi Nagpur Simdega Palakkad   

Meerut Pune Bhubaneshwar Wayanad   

Allahabad Nashik Cuttack Puducherry   

Gorakhpur Jaipur Sambalpur Chennai   

Saharanpur Jodhpur Rourkela Dindigul   

Bareilly Kota Berhampur Thiruchirapalli   

Ayodhya Udaipur Jeypore Coimbatore   

Moradabad Bharatpur Balasore Tirunelveli   

Aligarh Ajmer Baripada Cuddalore   

Mirzapur (Vindhyanchal) Bikaner Balangir Dharmapuri   

Dehradun   Kolkata Vellore   

Haldwani   Siliguri Ramanathapuram   

Rudrapur   Purulia Hyderabad   

Haridwar   Kharagpur Karimnagar   

    Rampurhat Warangal   

    Malda Adilabad   

    Raiganj Suryapet   

      Jadcherla   

Source: DCA. 

 

                                                           
3 As in March 2021. 
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Chart A1: Histogram Plot-Leptokurtic Distribution (Fat Tails) 

Histogram of Price Return Series 
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Source: DCA and Authors’ calculations. 

 

  



50 
 

Table A2: Unit Root Test Results 

Retail Price Levels 

  Level Diff Level Diff 

  Intercept Trend and Intercept 

  T stats P value T stats P value T stats P value T stats P value 

ADF Test  

Onion -7.64 0.00 -8.14 0.00 -4.96 0.00 -8.12 0.00 

Potato -3.18 0.02 -7.46 0.00 -3.54 0.04 -7.48 0.00 

Tomato -5.14 0.00 -11.92 0.00 -5.39 0.00 -11.92 0.00 

Phillips-Perron Test 

Onion -3.58 0.01 -65.74 0.00 -3.93 0.01 -65.73 0.00 

Potato -2.53 0.11 -77.25 0.00 -2.93 0.15 -77.26 0.00 

Tomato -4.39 0.00 -70.73 0.00 -4.62 0.00 -70.72 0.00 

 
Wholesale Price Levels 

  Level Diff Level Diff 

  Intercept Trend and Intercept 

  T stats P value T stats P value T stats P value T stats P value 

ADF Test  

Onion -4.69 0.00 -8.33 0.00 -4.87 0.00 -8.32 0.00 

Potato -2.87 0.05 -11.15 0.00 -3.07 0.11 -11.16 0.00 

Tomato -5.66 0.00 -9.96 0.00 -5.96 0.00 -9.95 0.00 

Phillips-Perron Test 

Onion -3.57 0.01 -63.81 0.00 -3.86 0.01 -63.79 0.00 

Potato -2.78 0.06 -73.94 0.00 -3.07 0.11 -73.95 0.00 

Tomato -4.40 0.00 -70.04 0.00 -4.61 0.00 -70.03 0.00 

 
Retail Price Return Series 

  Level Diff Level Diff 

  Intercept Trend and Intercept 

  T stats P value T stats P value T stats P value T stats P value 

ADF Test  

Onion -7.91 0.00 -20.96 0.00 -7.87 0.00 -20.97 0.00 

Potato -8.05 0.00 -16.76 0.00 -8.09 0.00 -16.76 0.00 

Tomato -9.16 0.00 -16.36 0.00 -9.17 0.00 -16.37 0.00 

Phillips-Perron Test 

Onion -72.71 0.00 -419.62 0.00 -72.67 0.00 -419.46 0.00 

Potato -82.47 0.00 -462.39 0.00 -82.52 0.00 -462.32 0.00 

Tomato -71.92 0.00 -436.21 0.00 -71.92 0.00 -436.17 0.00 

 
Wholesale Price Return Series 

  Level Diff Level Diff 

  Intercept Trend and Intercept 

  T stats P value T stats P value T stats P value T stats P value 

ADF Test  

Onion -7.93 0.00 -21.25 0.00 -7.89 0.00 -21.27 0.00 

Potato -11.89 0.00 -17.66 0.00 -11.91 0.00 -17.66 0.00 

Tomato -9.60 0.00 -18.96 0.00 -9.61 0.00 -18.96 0.00 

Phillips-Perron Test 

Onion -69.96 0.00 -368.26 0.00 -69.92 0.00 -368.16 0.00 

Potato -79.57 0.00 -335.63 0.00 -79.60 0.00 -335.56 0.00 

Tomato -69.55 0.00 -166.89 0.00 -69.54 0.00 -166.86 0.00 

Source: Authors’ estimates. 


