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Abstract: 
 
In this paper we use high-frequency multivariate data and attempt to model the joint 

distribution (dependence structure) of daily exchange rate returns of four major 

foreign currencies (USD, EURO, GBP and Swiss-Franc) against Indian rupees 

mainly in the copula-GARCH framework. We also compute 1-day, 99% portfolio 

Value at Risk (VaR) using Monte Carlo simulation technique for seven multivariate 

models, which were used to model the dependence structure of the four exchange 

rate returns. We also compare the performances of these multivariate models based 

on the goodness of in-sample fit as well as backtesting of VaR results. It is observed 

that multivariate normal distribution does not fit well the joint distribution of four 

exchange rate returns under consideration, and also number of exceptions raised in 

backtesting of VaR estimate are exceptionally high and also unconditional coverage 

test (binomial test/ kupiec test) and conditional coverage test (christoffersen test) 

suggest that the VaR estimate is inaccurate. In contrast, VaR estimate based on 

other six multivariate models produce acceptable VaR estimate. However, among all 

these seven models Clayton copula model and multivariate student’s t distribution 

after transforming individual exchange rate returns to student’s t distribution (Hull-

White transformation) produce least number of exceptions in back testing of VaR 

estimate.  
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Estimation of portfolio Value at Risk using Copula 
 
1. Introduction 
 

Recently, the interaction and dependence among the stock markets, exchange rates 

and interest rates, both locally and cross border, have become stronger than before, 

mainly on account of greater integration of financial markets, financial innovations, 

technology innovation which facilitate in massive flow of information among investors 

and policy makers. A better understanding of the dependence of asset prices is 

important for proper risk measurement which also helps in deriving full benefit of 

portfolio diversification by bank/financial analysts. For example, let us assume that 

the joint distribution of asset prices is skewed, such that there is higher probability of 

dependence in the left tail than in the right tail. Then, if we assume a symmetric joint 

distribution to measure the risk (such as value at risk), the assessment will be 

incorrect since downside and upside risks are different. Value at Risk (VaR) is widely 

used as a measure of risk of an asset or of a portfolio of asset. The 100α% 1-day 

ahead VaR (let us say λα,t) is defined as P[rt<=λα,t | rt-1]= α; where rt is the expected 

return of the portfolio in day ‘t’, rt-1 is the observed return of the portfolio in day ‘t-1’. 

For example, if there is very little chance, say 5% probability that tomorrow’s 

expected   losses for a portfolio would be greater than `100, and then `100 is the 1-

day 5% VaR for the portfolio.  

 

In this paper we use high-frequency multivariate data and attempt to model the joint 

distribution (dependency structure) of daily returns of four major foreign currencies 

(INR-USD, INR-EURO, INR-GBP and INR-CHF) against Indian rupees. Like in many 

previous works (as discussed in Patton (2002), Alexander et al (2005)), the modelling 

framework we adopt here is mainly a copula-GARCH model. In particular, we use 

ARMA-GARCH specification (ARMA for mean specification and GARCH for volatility 

modeling) to filter the deterministic terms in the daily return series and then model the 

residuals using number of multivariate statistical models viz. (i) Multivariate normal 

distribution (ii) Multivariate t-distribution (iii) Converting the individual series so that 

transformed variables follows Normal distribution (Hull-White transformation) and 

thereafter fitting these variable to a multivariate normal-distribution. (iv)Transforming 

the individual series so that transformed variables follows student's t distribution 

(Hull-White transformation) and thereafter fitting these variable to a multivariate t-

distribution. (v) Gauss-copula (vi) Student's t-Copula (vii) Clayton-copula. Thereafter, 

we compute VaR using Monte Carlo simulation technique for the portfolio with four 

risk factors (INR-USD, INR-EURO, INR-GBP and INR-CHF exchange rates) of equal 
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weights for each of the seven models of dependency structure as mentioned above. 

We also compare the performances of these models based on the goodness of in-

sample fit (log likelihood values of model fit) to the data as well as back testing of 

VaR results.  

 

2. Statement of Hypothesis 
(a) Daily exchange rate returns of the four major foreign currencies against Indian 

rupees do not follow Gaussian normal distribution. Therefore, using multivariate 

normal distribution to model the joint distribution of these daily returns is not 

appropriate and this may lead to inaccurate estimation of VaR of a portfolio of assets 

which depends on these exchange rates (risk factors).  

(b) Instead of multivariate normal distribution, copula approach of modeling the 

dependence structure of daily exchange rate returns would produce comparatively 

better estimation of VaR of a portfolio of assets which depends on these exchange 

rates (risk factors).  

 

3. Structure of the paper 
The paper is organized as follows. Section 4 gives a short literature review on the 

recent applications of copulas in modeling financial series; Section 5 introduces the 

modeling dependence structure, where we introduce the copula theory, the copula-

GARCH framework and the estimation procedure. In particular, we elaborate seven 

different multivariate model to model the four exchange rate return series, Section 6 

introduces the concept of Value at Risk (VaR) and different techniques to the same, 

Section 7 describe various methods to compare the performance of models, Section 

8 reports estimation results for the seven modeling strategies and makes comparison 

between them in terms of overall goodness of fit of data and back testing of VaR 

results and Section 9 concludes. 

 

4. Review of literature 
Copula is widely used in modeling the joint distributions because it does not require 

the assumption of joint normality and allow us to decompose n-dimensional joint 

distribution into its ‘n’ marginal distributions and a copula function which glue them 

together. Sklar (1959) introduced the term copula. A good introduction to the copula 

theory may be found in the books of Joe (1997) and Nelsen (1999). The papers of 

Bouye et al.(2000), Embrechts, Lindskog and McNeil (2003) present general 

examples of applications of copula in finance. Cherubini and Luciano (2001) 

estimated the VaR using the Archimedean family copula and the historical empirical 
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distribution to estimate the marginal distributions; Meneguzzo and Vecchiato (2002) 

used copula for modeling the risk of credit derivatives, Fortin and Kuzmics (2002) 

used convex linear combinations of copula for estimating the VaR of a portfolio 

consists of FSTE and DAX stock indices, Embrechts, McNeil and Straumann (2002) 

and Embrechts, Hoing and Juri (2003) used copula to model extreme value and risk 

limits.  To model the dependence structure between excess returns of "large cap" 

and "small cap" stock indices, Patton (2004) makes use of a group of frequently used 

copulas and focuses on the dependence between two stock indices which are more 

correlated during the market downturn than they are when in the upturn. The 

deviation from normality could lead to an inadequate VaR estimate and the portfolio 

could be either riskier than desired or could be needlessly conservative. To measure 

this asymmetric dependence, the paper uses exceedence correlation, as suggested 

by Longin & Solnik (2001) and Ang & Chen (2002), and demonstrates that rotated 

Gumbel copula yields the highest log likelihood (good fit) among all the copula 

candidates (including both normal and Student’s t copulas) and the same is chosen 

to model the bivariate distribution of two indices. Long Kang (2007) models the joint 

distribution of excess returns of four major assets (one year and ten year Treasury 

bonds and S&P 500 and Nasdaq indices) by a multidimensional copula approach. 

The modeling framework adopted was a copula-GARCH model where GARCH 

specification was used to model the marginal distribution of individual assets and 

then to link the margins together use n-dimensional copula (gauss, t, hierarchical and 

mixed copula). Nelsen (1998), shows that Archimedean family copula can be used to 

nest one copula into another copula to form a hierarchical structure. A mixed copula 

(Tasfack (2006)) is formed by summing up a group of weighted copulas where each 

copula features dependence between one pair of variables and the sum of the 

weights is equal to unity. Similar work is also done by Goeij and Marquering (2004) 

where they model the conditional covariance between stock and bond markets 

returns by a multivariate GARCH approach. They show strong evidence of 

heteroskedasticity and asymmetries in the covariance between stock and bond 

market returns. Tasfack (2006) models dependence structure and extreme co-

movements of international equity and bond markets by a regime-switching copula-

GARCH model. In one regime, he uses an n-dimensional normal copula to link the 

marginal distributions and in the other he uses a mixed copula of which each copula 

component features the dependence structure of a particular pair of variables. The 

paper empirically demonstrates that dependence between international assets of the 

same type is high in both regimes while the dependence between equity and bond 

markets is low even within one country. 
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5. Modelling dependence structure 
To model the dependence structure of the four exchange rates returns, we use two 

step procedures. At first the stochastic volatility effects of the individual series are 

modelled by generalized autoregressive conditional heteroskedasticity (GARCH) 

model (Bollerslev, T, 1986). In particular, we fit univariate ARMA-GARCH models. 

Thereafter, model the joint dependence structure of the innovations (η) of the 

respective ARMA-GARCH equations. We use seven different models for the joint 

dependence structure of the four risk factors (exchange rate returns) i.e. (i) 

multivariate normal distribution; (ii) multivariate t-distribution; (iii) converting the 

individual series so that transformed variables follows Normal distribution (Hull-White 

transformation) and thereafter fitting these variable to a multivariate normal-

distribution; (iv) transforming the individual series so that transformed variables follow 

student's t distribution (Hull-White transformation) and thereafter fitting these variable 

to a multivariate t-distribution; (v) Gauss-copula; (vi) student’s t-Copula; and (vii) 

Clayton-copula. 
 

5.1 Multivariate distribution: Hull-White transformation: 
To model the multivariate distribution, an interesting approach is suggested by Hull 

and White (1998). If returns are not multivariate normal, they suggested that we can 

still apply the variance-covariance approach if we transform our returns to make them 

multivariate normal. We then apply the Monte Carlo technique to transformed 

returns, and derive the VaR estimates. 

Assume there are 'm' different instruments in our portfolio. Let eit be the returns on 

asset 'i' in period 't', and let Gi be an assumed distribution function for eit. This 

function will, in general, be time dependent reflecting factors such as GARCH 

volatility and correlation process. We now transform eit into a new variable (fit) using 

the transformation: 

fit=N-1[Gi(eit)] …………………………………………………………………………….  (1) 

Where N is the standard normal distribution function (or we also could have used 

student's t distribution). The term in square brackets, Gi(eit), is the zth percentile of 

the assumed distribution function Gi, and fit is the same percentile of the standard 

normal distribution. Hence, equation (1) transforms the return eit into its standard 

normal equivalent, fit. We can also invert equation (1) to map the fit back to the 

original returns, eit, using the reverse mapping: 

eit=G-1
i[N(fij)]  ...........................................................................................................(2) 
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Equation (1) thus allows us to transform our returns and equation (2) allows us to un-

transform them. The function Gi can take any form we like: we can take it to be some 

particular heavy-tailed distribution, for instance, or we can take it to be empirical 

distribution function drawn from our original data. Next, we assume that our 

transformed returns – the fit – are distributed as multivariate normal and we estimate 

their mean vector and covariance matrix. Hull and White suggest that we use a 

Monte Carlo method to simulate values of the transformed returns fit based on the 

estimated mean and variance-covariance parameters. We then use equation (2) to 

map our simulated fit values to their untransformed counterparts, the eit, to give a set 

of simulated non-normal returns, and we can estimate the desired risk measures 

using a standard method (e.g. a non-parametric method based on the simulated 

series). This approach is easy to implement and can be applied to a much wider set 

of non-multivariate-normal return distribution. In fact, this is nothing but the gauss-

copula (discussed later). 

 
5.2 Copula 
Copulas have become a popular tool in multivariate modelling. A copula is a method 

for associating random variables together, irrespective of their marginal distributions. 
Copula is a multivariate distribution whose marginal distributions are all uniform 

distribution over (0, 1). The main purpose of copula is to separate marginal 

distribution from correlation and this is done by transforming each variable so that it 

becomes uniformly distributed. For continuous distributions, there is a widely used 

technique to do so. Let F denote the cumulative distribution function of the random 

variable X, i.e. F(x) = P(X<x). Then the variable U=F(X) is uniformly distributed [Let u 

be a number between 0 and 1; then P(U<u) = P(F(X)<u) = P(X< F-1(u)) = F(F-1 (u)) = 

u]. Therefore, if we are able to glue together uniform distributions, then that can be 

termed as copula.  
 

Let X=(X1, ..., Xn) be the random vector with marginal cumulative distribution 

functions (C.D.F.) F1, ..., Fn. The m-dimensional multivariate C.D.F., 

[ ,,,),,( 111 nnn xXxXPxxF ≤ ]≤= KK  completely determines the dependence structure 

of random variables X1, ..., Xn. However, its analytic representation is often too 

complex, making practically impossible its estimation and consequently its use in 

simulation models. Sklar (1959) first showed that there exists a m -dimensional 

copula C such that F (x1 ,...,xm )=C (F1 (x1 ),...,Fm (xm )).  

The use of copula function allows us to overcome the issue of estimating the 

multivariate C.D.F. by splitting it into two parts: 
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(a) Determine the margins F1, ..., Fn, representing the distribution of each factors; 

estimate their parameters by fitting with the available data. 

(b) Determine the dependence structure of the random variables X1, ..., Xn, by means 

of a suitable copula function. 
 

Copulas provide greater flexibility in modelling the multivariate distribution by allowing 

us to fit the appropriate marginal to different random variables and then specifying 

the appropriate copula function that bind these marginal distributions together. In 

contrast, traditional representations of multivariate distributions require that all 

random variables have the same marginal distribution. Since a copula can capture 

dependence structures regardless of the form of the margins, a copula approach to 

modelling related variables is potentially very useful in risk management. These 

advantages imply that copulas provide a superior approach to the modelling of 

multivariate statistical problems. Example and definition of some of the widely used 

copula such as Gauss copula, student’s t-copula, Gumbel copula, Clayton copula are 

given in Annex I.  

 
6. Value at Risk (VaR) 
In order to compute portfolio VaR, we need to identify basic market rates and prices 

(risk factors) that affect the value of the portfolio. It is necessary to identify a limited 

number of basic risk factors; otherwise, the complexity of deriving a portfolio level 

VaR would be difficult. There are three broad methods to compute VaR i.e. Historical 

Simulation, Variance-Covariance (Parametric) and Monte Carlo technique.  

 
6.1 Historical Simulation 

Historical simulation (HS) is simple to implement and requires relatively few 

assumptions about the statistical distribution of the underlying market factors. HS 

involves using historical changes in market rates and prices to construct a distribution 

of potential future portfolio profits and losses and then calculating, for example, the 

99%VaR as the loss that is exceeded only 1% of the time. The distribution of profit 

and losses is constructed by taking the current portfolio and subjecting it to the actual 

changes in the market factors experienced during each of the last N days (e.g. 250 

days). That is N sets of hypothetical values of market factors are constructed using 

their current values and the changes experienced during the last N periods. Using 

these hypothetical values of market factors, N hypothetical mark-to-market portfolio 

values are computed (hypothetical because the current portfolio was not held on 

each of the last N days). Making use of the actual historical changes in risk factors to 
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compute the hypothetical profits and losses is the important characteristic of 

historical simulation. 

 
6.2 Variance-Covariance 

In Variance-Covariance method of estimation of VaR, it assumes the returns (X) are 

normally distributed. It requires that we estimate first two moments i.e. mean (µ) and 

standard deviation (σ) which completely describe the normal distribution. Therefore, 

99% VaR is (µ - Zα*σ) i.e. µ-2.33*σ (where Pr( (X- µ )/ σ < Zα)=.01). 

 

6.3 Monte Carlo Simulation 

In the case of Monte Carlo technique samples are drawn repeatedly from the random 

processes governing the prices or returns of the financial instruments we are 

interested in. For example, if we were interested in estimating a VaR, each simulation 

would give us a possible value for our portfolio at the end of our holding period. If we 

take enough of these simulations, the simulated distribution of portfolio values will 

converge to the portfolio’s unknown ‘true’ distribution, and we can use the simulated 

distribution of end-period portfolio values to infer the VaR. The simulation process 

involves a number of specific steps. The first step is to select a model for the 

stochastic variable(s) of interest. Having chosen our model, we estimate its 

parameters – volatilities, correlations etc. We then construct the simulated paths for 

the stochastic variables. Each set of ‘random’ numbers then produces a set of 

hypothetical terminals price(s) for the instrument(s) in our portfolio. We then repeat 

these simulations sufficient times to be confident that the simulated distribution of 

portfolio values to be a reliable proxy for it. Once that is done, we can infer the VaR 

from this proxy distribution by using quantile / cumulative distribution function/ 

percentile.  

 

In contrast to Historical Simulation, the Parametric VaR model imposes a strong 

theoretical assumption on the underlying properties of data; frequently Normal 

Distribution is assumed because it is easily understood and can be defined using 

only the first two moments. Other probability distributions may be used, but at a 

higher computational cost.  However, empirical evidence indicates that asset price 

returns, in particular the daily price changes, most of the time does not follow Normal 

Distribution. In the presence of excess kurtosis, failure rate increases when the VaR 

is estimated by the Gaussian distribution. As a result, multivariate normal distribution 

assumption of portfolio is frequently unsatisfactory because large changes occurred 
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more frequently than what is predicted under the normality assumption and which 

lead to underestimation of the portfolio VaR.  

 
Let us assume that the copula C which is a good proxy for the actual multivariate 

probability distribution of the risk factors of a portfolio has been selected and we are 

interested in the Value-at-Risk of the portfolio. If we have four risk factors (i.e. four 

exchange rates) with marginal cumulative distribution function (F1, F2, F3, F4), we 

need to generate a set of random variables (X1,X2,X3,X4) from the selected copula 

F(C), then ( F1
-1(x1), F2

-1(x2), F3
-1(x3), F4

-1(x4) ) form one scenario of possible changes 

of the risk factor. The Monte Carlo method generates N such scenarios, and 

evaluates the change of value of a portfolio under each of these scenarios. One 

period VaR with confidence α is computed as the sample α−quantile of the N such 

scenarios. 

 

7. Comparison of models 
To compare the goodness of in-sample fit and performances of the models, we use 

both the log likelihood values and back testing of results (in terms of number 

occasion when actual exceed the VaR number). We compute the VaR of the 

hypothetical portfolio for 200 days using Monte Carlo technique for these seven 

models and observe the number of occasions of exception (i.e. actual is exceeding 

the VaR) and some other statistical test as discussed in 7.1. 

 

7.1 Back testing of VaR 
7.1.1 Current Regulatory Framework for back testing 
According to amendment to 1988 Basle Capital Accord, the capital standards cover 

all assets in a bank’s trading account (i.e., assets carried at their current market 

value) as well as all foreign exchange and commodity positions wherever located.  

According to internal models approach (IMA) the capital charges are based on the 

banks own risk measurement models using the standardizing regulatory parameters 

of a ten-day holding period (k = 10) and 99% VaR. In other words, market risk capital 

charge of a bank is based on its own estimate of the potential loss that would not 

exceed with 99% confidence level over the subsequent two week period. Specifically, 

a bank’s market risk capital charge for time t+1, MRCm,t+1 shall be set at the higher of 

the previous day's VAR, or the average over the 60 business days that is, MRCm,t+1= 

max [  ; VaRm,t(10,1) ] + SRCm,t ……………..(3) 
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where K and SRCm,t are a regulatory multiplication factor and an additional capital 

charge for the portfolio's idiosyncratic credit risk, respectively. Under the current 

regulatory frame work, K>=3.  The regulatory multiplication factor (k) depends on the 

number of exceptions (defined as the occasions when  εt+1 < VaRm,t (1,1) ) observed 

over the last 250 trading days. To address the low power of the implied, binomial 

hypothesis test, the number of such exceptions is divided into three zones. Within the 

green zone (four or fewer exceptions), a VaR model is deemed “acceptably 

accurate”, and ‘k’ remains at three, the level specified by the Basle Committee. 

Within the yellow zone (five through nine exceptions), ‘k’ increases incrementally with 

the number of exceptions. Within the red zone (ten or more exceptions), the VaR 

model is deemed to be inaccurate, and ‘k’ increases to four. The institution must also 

explicitly improve its risk management system. 
 
7.1.2 Alternative Evaluation Methods 
 
7.1.2.1 Evaluation of VaR estimates based on the binomial distribution 
 
As discussed in the previous section (7.1.1) that under the current regulatory 

framework, banks will report their one-day VaR estimates to the regulators, who also 

verify whether actual portfolio losses exceed these estimates. If we assume that the 

VaR estimates of the bank are accurate, such observations can be modelled as 

draws from an independent binomial random variable with a probability of occurrence 

equal to the specified α % (99 %). As discussed by Kupiec (1995), a variety of tests 

are available to examine whether the observed probability of occurrence, also known 

as unconditional coverage, equals α, and the method that regulators have chosen is 

based on the number of occasions where εt+1 < VaRm,t (1,1) in a sample. The 

probability of observing x such exceptions in a sample of size T is 

Pr(X; α, T) =  αx (1-α)T-x………………………………………………………………(4) 

Accurate VaR estimates should exhibit the property that their unconditional coverage, 

measured by α* = x/T, equals the desired coverage level α. Thus, the relevant null 
hypothesis is α*= α, and the appropriate likelihood ratio statistic is 

LRuc(α) = 2 [ log ( α*X (1 – α*)T-X) – log( αx (1-α)T-X ) ] …………………………………..(5) 

Under the null hypothesis LRuc(α) has an asymptotic χ2(1)  distribution. That is we 

reject the null hypothesis at 5% level of significance if the test statistics is greater 

than 3.841459.   
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7.1.2.2 Conditional Coverage (Christoffersen 1997) 
VaR estimate can be considered as an interval estimate, that is, if ft+k, is the k-step-

ahead (forecasts) return probability distribution then α percentile lower left-hand 

interval is the (100- α)% VaR. Forecast performance can be examined over the 

sample period with or without reference to the information available at each point in 

time. The LRuc(α) test (as discussed in 7.1.2.1) is an unconditional test of interval 

forecasts. However, in the presence of the stochastic volatility, testing the conditional 

accuracy of interval forecasts becomes important. Moreover, LRuc(α) test fails when 

the exceptions are clustered in a time dependent fashion. The LRcc(α) test proposed 

by Christoffersen (1997) is a test of correct conditional coverage. For a given 

coverage level α, one-step-ahead interval forecasts are formed using model m and 

are denoted as Vmt(α) =(-∞, VaRmt(α)]  . Based on these forecasts (Vmt(α)) and 

the observed portfolio returns, the indicator variable Imt(α)  generated as given below 

Imt (α) = ……………………………………………………………..(6) 

The LRcc(α) test for correct conditional coverage is formed by combining tests of 

correct unconditional coverage and independence, and the relevant test statistic is 

LRcc(α) = LRuc(α) + LRind(α) which is distributed χ 2(2). Note that the LRind(α) statistic 

is a likelihood ratio statistic of the null hypothesis of serial  independence against the 

alternative of first-order Markov dependence. Under this alternative hypothesis, the 

likelihood function is LA =  where the Tij is the 

number of observations in state j after having been in state i the period earlier 

 
Under the null hypothesis of independence,π01= π11= π and the relevant likelihood 

function is L0 = ; where π=(T01+T11)/T. The test 

statistic is formed as LRind(α)=2[log LA – log L0] which follows χ 2(1) asymptotically. 
 
8. Empirical Analysis 
In this study, we use daily data on four exchange rates (INR-USD, INR-EURO, INR-

GBP and INR-CHF) series, downloaded from the official source (www.rbi.org.in; 

www.federalreserve.gov ). The sample period is January 2000 to November 2010. 

The summary statistics is given in Table 1, kernel densities are shown in Fig 1 and 

daily returns are shown in Figure 2. Various normality tests (Nortest package in ‘R’ 

V2.12.0) such as Anderson-Darling normality test, Cramer-von Mises normality test, 

Lilliefors (Kolmogorov-Smirnov) normality test, Shapiro-Francia normality test, 
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Pearson chi-square normality test suggests that the variables are not normally 

distributed (Annex II). 

 
 
Table 1: summary statistics of daily returns of exchange rates  
  INR-CHF INR-EUR INR-GBP INR-USD 
 Mean 0.0002 0.0001 0.0000 0.0000
 Median 0.0000 0.0001 0.0001 0.0000
 Maximum 0.0433 0.0378 0.0472 0.0394
 Minimum -0.0415 -0.0398 -0.0417 -0.0371
 Std. Dev. 0.0076 0.0069 0.0067 0.0040
 Skewness 0.0527 0.0078 -0.1582 0.1733
 Kurtosis 5.0574 5.1841 7.2376 16.9476
 Jarque-Bera 484 544 2061 22215
 Probability 0.0000 0.0000 0.0000 0.0000
Observations 2739 2739 2739 2739

 
Figure 1: Kernel densities of daily returns of exchange rates 
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Figure 2: Plotted daily returns of the four exchange rates   
INR-USD exchange rate: Daily returns in percentage
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INR-CHF exchange rate: Daily returns in percentage
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8.1 Modelling marginal distributions 
 

Results of the ARMA-GARCH models for the daily returns of INR-USD, INR-EURO, 

INR-GBP and INR-CHF exchange rates are given in Annex III.  The ARMA_GARCH 

model for the conditional mean and conditional variance of these four series are as 

under: 

INR-USD 
USD = -3.10357879533e-05 + [MA(1)=-0.0946539736752] ………………………….(7) 
GARCH = 2.19530647185e-06 + 0.862185107635*GARCH(-1) 
 

INR-EURO 
EUR = 0.000120101838983 + [AR(1)=-0.0545592135554] ………………………….(8) 
GARCH = 7.20273356275e-07 + 0.0517524042758*RESID(-1)^2 + 
0.933656466512*GARCH(-1) 
 
INR-SWISS Franc 
CHF = 0.000115982272748 + [MA(1)=-0.07135] ……………………………………..(9) 
GARCH = 7.55810434168e-07 + 0.0451261892429*RESID(-1)^2 + 
0.94120692432*GARCH(-1) 
 

INR-GBP 

GBP = 7.64605751336e-05 + [MA(1)=-0.0617194170291] ……………………….(10) 
GARCH = 5.9605825624e-07 + 0.052704390331*RESID(-1)^2 + 

0.933170303731*GARCH(-1)  
 

8.2 Modelling dependence structure 
To model the dependence structure of the four exchange rates returns, we construct 

the joint dependence structure of the innovations (η) of the respective GARCH 

equation. We use seven different models for the combined dependence structure of 

the four risk factors (exchange rate returns) i.e. (i) multivariate normal distribution; (ii) 

multivariate t-distribution; (iii) converting the individual series so that transformed 

variables follows Normal distribution (Hull-White transformation) and thereafter fitting 

these variable to a multivariate normal-distribution; (iv) transforming the individual 

series so that transformed variables follows student's t distribution (Hull-White 

transformation) and thereafter fitting these variable to a multivariate t-distribution; (v) 

Gauss-copula; (vi) t-Copula; and (vii) Clayton-copula. We have estimated the model 

using the QRMlib package in 'R' version 2.12.0 (http://cran.r-project.org/). The fitted 

models are shown in Figure 3.a to 3.x. The 'R' script used to calibrate and back test 

the model is given in Annex IV. Once the model parameters are estimated, we have 

used the Monte Carlo simulation technique to calculate the VaR of the portfolio. That 

is, we draw a large number of random observations (2500) for each of the four 

exchange rates from each of the seven calibrated multivariate models (i) to (vii) as 

described above and calculate the average (assuming equal weight of the risk factors 
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in the portfolio). If we sort these averages (2500) for each of the models separately in 

descending order 99% VaR would be the 99 percentile of these sorted series. To 

assess the performance of VaR of these seven models we performed a backtesting 

for last 200 days (10-Dec-2009 to 27-Sep-2010).  
 

Figure 3.a Gauss Copula: INR-USD and INR-EURO    Figure 3.b t-Copula: INR-USD and INR-EURO 

 
Figure 3.c Gumble-Copula: INR-USD and INR-EURO   Figure 3.d Clayton -Copula: INR-USD and INR-EURO 

 
Figure 3.e Gauss Copula: INR-USD and INR-CHF   Figure 3.f t-Copula: INR-USD and INR-CHF 
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Figure 3.g Gumble -Copula: INR-USD and INR-CHF   Figure 3.h Clayton -Copula: INR-USD and INR-CHF 

 
 
Figure 3.i Gauss Copula: INR-USD and INR-GBP   Figure 3.j t-Copula: INR-USD and INR-GBP 

 
 
Figure 3.k Gumble -Copula: INR-USD and INR-GBP  Figure 3.l Clayton -Copula: INR-USD and INR-GBP 
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Figure 3.m  Gauss Copula: INR-EURO and INR-CHF      Figure 3.n  t-Copula: INR-EURO and INR-CHF 

 
Figure 3.o  Gumble -Copula: INR-EURO and INR-CHF  Figure 3.p  Clayton -Copula: INR-EURO and INR-CHF 

 
 

 
Figure 3.q  Gauss Copula: INR-EURO and INR-GBP  Figure 3.r   t-Copula: INR-EURO and INR-GBP 

  
Figure 3.s  Gumble -Copula: INR-EURO and INR-GBP  Figure 3.t   Clayton -Copula: INR-EURO and INR-GBP 
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Figure 3.u  Gauss Copula: INR-CHF and INR-GBP   Figure 3.v   t-Copula: INR-CHF and INR-GBP 

 
 
Figure 3.w  Gumble -Copula: INR-CHF and INR-GBP   Figure 3.x  Clayton -Copula: INR-CHF and INR-GBP 
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8.3. Comparison of models 
To compare the goodness of fit and performance of the models we use both the log 

likelihood values and back testing of results (in terms of number occasion when 

actual exceed the VaR number).  

 
8.3.1 Log likelihood 
Estimated parameters and log likelihood values (log likelihood values of copula 

models are positive and for non-copula models are negative) of all seven models are 

given in Annex V. Clayton copula and multivariate ‘t’ distribution exhibit best in-

sample fit. 

 
8.3.2 Back testing 
For the purpose of back testing, we use the 200 days data and calculate the number 

of occurrence of exceptions under each model. Also we compute the Kupiec test and 

Christoferson test to check the effectiveness of the model. 99% VaR implies that out 

of 200 days two exceptions are acceptable. The back testing result shows that Model 

(i) produces 10 exceptions, model (ii), model (iii), model (v) and model (vi) produces 

three exceptions each and Model (iv) and model (vii) produces two exceptions each. 

However, Kupiec tests and Christoferson test indicates that for model (i) the null 

hypothesis is rejected which implies that the VaR estimate using model (i) is not 

accurate. For all other models null hypothesis cannot be rejected in both the tests.   

  

9. Conclusion 
In this paper, we use high-frequency multivariate data and attempt to model the joint 

distribution (dependency structure) of daily returns of four major foreign currencies 

against Indian rupees. Like in many previous works, the modelling framework we 

adopt here is mainly a copula-GARCH model. In particular, we use ARMA-GARCH 

specification to filter the deterministic terms in the daily return series and then model 

the residuals using various statistical techniques such as (i) multivariate normal 

distribution; (ii) multivariate t-distribution; (iii) converting the individual series so that 

transformed variables follows Normal distribution (Hull-White transformation) and 

thereafter fitting these variable to a multivariate normal-distribution; (iv) transforming 

the individual series so that transformed variables follows student's t distribution 

(Hull-White transformation) and thereafter fitting these variable to a multivariate t-

distribution; (v) Gauss-copula; (vi) t-Copula; and (vii) Clayton-copula. Thereafter, we 

compute portfolio VaR using Monte Carlo simulation technique for the portfolio with 

four risk factors (INR-USD, INR-EURO, INR-GBP and INR-CHF exchange rates) of 
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equal weights for each of the seven models of dependency structure. We also 

compare the performances of these models based on the log likelihood values of 

model fit to the data as well as back testing of VaR results. As part of back testing of 

VaR results, one-day portfolio VaRs were computed for the 200 days for the 

hypothetical portfolio which depends on these four risk factors using Monte Carlo 

Simulations technique, for each of the seven models of dependency structure. It is 

observed that multivariate normal distribution does not provide a good in-sample fit of 

the joint distribution of four exchange rate returns under consideration, and also 

number of exceptions raised in backtesting of VaR estimate are exceptionally high 

and also unconditional coverage test (binomial test/ kupiec test) and conditional 

coverage test (christoffersen test) suggest that the VaR estimate is inaccurate. In 

contrast, VaR estimate based on other six models produce acceptable VaR estimate. 

However, among these models, Clayton copula model (model vii) and multivariate 

student’s t distribution after transforming individual exchange rate returns to student’s 

t distribution (Hull-White transformation - model iv) produce least number of 

exceptions (2 out of 200 days) in back testing of VaR estimate.  
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Annex I 
 

Examples of Copula 
Product Copula/ Independence copula 

The probability of multiple events, if they are independent, can be specified by 

multiplying individual probabilities together. Two random variables R1 and R2 are 

independent if and only if the product of their distribution functions F1 and F2 equals 

their joint distribution function. Hence the product copula is defined as 

C(u1, ..., un) = P(U1<u1, ..., Un<un) = P(U1<u1) P(U2<u2) ... P(Un<un) = u1 u2 . un. 
 
Gaussian copula 

If we transform the random variable (X) using CDF to U which is uniformly distributed 

and transform them again so that they become normally distributed using the inverse 

Normal probability function. The joint distribution of these Normal variables is then 

assumed to be multivariate Normal, with a given correlation matrix ∑ 

Writing Φ∑for the probability P(Z1<z1, ..., Zn<zn), where the Z.s are multivariate 

Normal with correlation matrix ∑, we have 

C(u1, ..., un) = Φ∑ (Φ-1(u1), ..., Φ-1(un)) . 

 
When n=2, the bivariate gauss copula as proposed by Lee (1983) takes the form: 

 
Where Φ is the CDF of the standard normal distribution, and ΦG(u1,u2) is the standard 

bivariate normal distribution with correlation parameter θ.  

Student's t-copula 

Similarly, the t copula is the unique copula of X 

C(u1, ..., un) = P(U1<u1, ..., Un<un)= Tν,∑( Tν
-1(u1),... Tν

-1(un)) 

with Tν denoting the cumulative distribution function of the univariate Student-t 

distribution and Tν,∑ denoting the cumulative distribution function of the multivariate 

Student-t distribution. 
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Gumbel Copula 
Bivariate Gumbel Copula is given by the formula 

 
The parameter θ may take all values in the interval [1,∞). For θ=1 the gumbel copula 

becomes product/independent copula. The Gumbel copula interpolates between 

independence and perfect dependence and the parameter θ represents the strength 

of dependence. To calibrate Gumbel copula to empirical data sample correlation 

coefficient (Kendall’s tau ρτ) is used and the formula is ρτ= 1- 1/ θ. 

Clayton Copula 

Bivariate Clayton Copula is given by the formula 

 
As θ --> 0, Clayton copula becomes independent copula. To calibrate Clayton copula 

to empirical data sample correlation coefficient (Kendall’s tau ρτ) is used and the 

formula is: ρτ= θ/( θ+2). 

 

The Student-t copula has positive tail dependence whenever the correlation is 

positive. The coefficients of upper and lower tail dependence are equal, by 

symmetry. The Clayton copula has positive lower tail dependence (2−1/θ) but no upper 

tail dependence. The Gumbel copula has positive upper tail dependence (2−2−1/ θ), 

but no lower tail dependence. 

 
 
 

Annex II 
 

p-value of normality test of exchange rate returns 

 Anderson-
Darling 

Cramer-von 
Mises 

Kolmogorov-
Smirnov 

Shapiro-
Francia 

Pearson 
chi-square 

INR-USD < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 

INR-EUR < 2.2e-16 4.043e-10 3.366e-10 < 2.2e-16 1.845e-08 

INR-CHF < 2.2e-16 4.635e-10 1.88e-10 < 2.2e-16 1.681e-06 

INR-GBP < 2.2e-16 3.76e-05 1.204e-14 < 2.2e-16 4.544e-12 
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Annex III 
 

Equation 1: GARCH model for INR-CHF daily exchange rate return 
Dependent Variable: CHF   
Method: ML - ARCH (Marquardt) - Normal distribution 
Included observations: 2739 after adjustments  
Convergence achieved after 9 iterations  
MA Backcast: 12/31/1999   
Presample variance: backcast (parameter = 0.7) 
GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*GARCH(-1) 

Variable Coefficient Std. Error z-Statistic Prob.  

C 0.000116 0.000120 0.969923 0.3321
MA(1) -0.071346 0.019630 -3.634583 0.0003

 Variance Equation   

C 7.56E-07 2.23E-07 3.385439 0.0007
RESID(-1)^2 0.045126 0.006588 6.849306 0.0000
GARCH(-1) 0.941207 0.009017 104.3812 0.0000

R-squared 0.007395     Mean dependent var 0.000182
Adjusted R-squared 0.007032     S.D. dependent var 0.007567

S.E. of regression 0.007541     Akaike info criterion 
-

7.038117

Sum squared resid 0.155627     Schwarz criterion 
-

7.027318

Log likelihood 9643.701     Hannan-Quinn criter. 
-

7.034214
F-statistic 5.097607     Durbin-Watson stat 2.032422
Prob(F-statistic) 0.000431    

Inverted MA Roots       .07   

 
Equation 2: GARCH model for INR-EURO daily exchange rate return 
Dependent Variable: EUR   
Method: ML - ARCH (Marquardt) - Normal distribution 
Date: 12/17/10   Time: 10:35   
Sample (adjusted): 1/04/2000 7/01/2010  
Included observations: 2738 after adjustments  
Convergence achieved after 10 iterations  
Presample variance: backcast (parameter = 0.7) 
GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*GARCH(-1) 

Variable Coefficient Std. Error z-Statistic Prob.  

C 0.000120 0.000113 1.064834 0.2870
AR(1) -0.054559 0.019895 -2.742354 0.0061

 Variance Equation   

C 7.20E-07 1.70E-07 4.228204 0.0000
RESID(-1)^2 0.051752 0.006489 7.975916 0.0000
GARCH(-1) 0.933656 0.008122 114.9531 0.0000
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R-squared 0.003560     Mean dependent var 0.000117
Adjusted R-squared 0.003196     S.D. dependent var 0.006943

S.E. of regression 0.006932     Akaike info criterion 
-

7.207689

Sum squared resid 0.131470     Schwarz criterion 
-

7.196887

Log likelihood 9872.326     Hannan-Quinn criter. 
-

7.203786
F-statistic 2.443586     Durbin-Watson stat 2.016019
Prob(F-statistic) 0.044661    

Inverted AR Roots      -.05   

Equation 3: GARCH model for INR-GBP daily exchange rate return 

Dependent Variable: GBP   
Method: ML - ARCH (Marquardt) - Normal distribution 
Convergence achieved after 13 iterations  
MA Backcast: 12/31/1999   
Presample variance: backcast (parameter = 0.7) 
GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*GARCH(-1) 

Variable Coefficient Std. Error z-Statistic Prob.  

C 7.65E-05 0.000103 0.739594 0.4595
MA(1) -0.061719 0.019457 -3.172031 0.0015

 Variance Equation   

C 5.96E-07 1.22E-07 4.881099 0.0000
RESID(-1)^2 0.052704 0.005890 8.948781 0.0000
GARCH(-1) 0.933170 0.007298 127.8618 0.0000

R-squared 0.004188     Mean dependent var 6.98E-06
Adjusted R-squared 0.003824     S.D. dependent var 0.006665

S.E. of regression 0.006652     Akaike info criterion 
-

7.368236

Sum squared resid 0.121121     Schwarz criterion 
-

7.357437

Log likelihood 10095.80     Hannan-Quinn criter. 
-

7.364334
F-statistic 2.877372     Durbin-Watson stat 2.007843
Prob(F-statistic) 0.021580    

Inverted MA Roots       .06   
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Equation 4: GARCH model for INR-USD daily exchange rate return 
Dependent Variable: USD   
Method: ML - ARCH (Marquardt) - Normal distribution 
Included observations: 2739 after adjustments  
Convergence achieved after 6 iterations  
MA Backcast: 12/31/1999   
Presample variance: backcast (parameter = 0.7) 
GARCH = C(3) + C(4)*GARCH(-1)   

Variable Coefficient Std. Error z-Statistic Prob.  

C -3.10E-05 6.94E-05 -0.447228 0.6547
MA(1) -0.094654 0.009674 -9.783973 0.0000

 Variance Equation   

C 2.20E-06 1.82E-06 1.207169 0.2274
GARCH(-1) 0.862185 0.114189 7.550513 0.0000

R-squared 0.009786     Mean dependent var 1.40E-05
Adjusted R-squared 0.009424     S.D. dependent var 0.004019

S.E. of regression 0.004000     Akaike info criterion 
-

8.206186

Sum squared resid 0.043789     Schwarz criterion 
-

8.197547

Log likelihood 11242.37     Hannan-Quinn criter. 
-

8.203064
F-statistic 9.016102     Durbin-Watson stat 2.010962
Prob(F-statistic) 0.000006    

Inverted MA Roots       .09   
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Annex IV 

'R'  Script to estimate the parameter of the multivariate distributions, Monte Carlo 
simulation for VaR computation and back testing the results ('R' version 2.12.0)   
 
library(QRMlib) 
########## reading the data file from a .txt file which contains four series of daily returns of 
exchange rates and four series of corresponding innovation series (using GARCH filter) #### 
exch<-read.table(file="e:\\copula\\exch.txt",header=T) 

#############assigning the daily return series  

usd<-exch$usd 

chf<-exch$chf 

eur<-exch$eur 

gbp<-exch$gbp 

############### assigning the innovation i.e. standradised (GARCH) return series 
usd1<-exch$usd1 
chf1<-exch$chf1 
eur1<-exch$eur1 
gbp1<-exch$gbp1 
############### variables and matrices initialisation 
i=j=k=0 
a<-matrix(0,200,2500) 
b<-matrix(0,200,2500) 
c<-matrix(0,200,2500) 
d<-matrix(0,200,2500) 
dd<-matrix(0,200,2500) 
rmn1<-matrix(0,2500,1) 
rnq=matrix(0,200,1) 
rtq=matrix(0,200,1) 
rgq=matrix(0,200,1) 
rtcq=matrix(0,200,1) 
racq=matrix(0,200,1) 
rhwtq=matrix(0,200,1) 
rhwnq=matrix(0,200,1) 
####Model calibration and Back testing: using 2500 observations for model calibration and 
200 observations for back testing ### 
for (i in 1:200){ 
j=1+i;k=2500+i; 
a[i,]=usd1[j:k]; 
b[i,]=eur1[j:k]; 
c[i,]=chf1[j:k]; 
dd[i,]=gbp1[j:k]; 
d=cbind(a[i,],b[i,],c[i,],dd[i,]); 
############converting the original series to uniform distribution by way of cumulative 
density function 
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Administrator
Text Box
U <- apply(d,2,edf,adjust=1); 



#### univariate t dist 
t1<-fit.st(d[,1]) 
t2<-fit.st(d[,2]) 
t3<-fit.st(d[,3]) 
t4<-fit.st(d[,4]) 
#####################  Hull-white transformation - t dist 
h1<-ecdf(d[,1]) 
hw1<-2499/2500*h1(d[,1]) 
h2<-ecdf(d[,2]) 
hw2<-2499/2500*h2(d[,2]) 
h3<-ecdf(d[,3]) 
hw3<-2499/2500*h3(d[,3]) 
h4<-ecdf(d[,4]) 
hw4<-2499/2500*h4(d[,4]) 
hwt1<-qt(hw1,df=t1$par.est[1]) 
hwt2<-qt(hw2,df=t2$par.est[1]) 
hwt3<-qt(hw3,df=t3$par.est[1]) 
hwt4<-qt(hw4,df=t4$par.est[1]) 
hwt<-cbind(hwt1,hwt2,hwt3,hwt4) 
fhwt<-fit.mst(hwt) 
rmhwt<-rmvt(n=1000, sigma = fhwt$Sigma, df = fhwt$nu) 
x1<-pt(rmhwt[,1],df=t1$par.est[1]) 
x2<-pt(rmhwt[,2],df=t2$par.est[1]) 
x3<-pt(rmhwt[,3],df=t3$par.est[1]) 
x4<-pt(rmhwt[,4],df=t4$par.est[1]) 
y1<-quantile(d[,1],x1) 
y2<-quantile(d[,2],x2) 
y3<-quantile(d[,3],x3) 
y4<-quantile(d[,4],x4) 
rmhwt1<-y1+y2+y3+y4 
rhwtq[i]<-quantile(rmhwt1,.01) 
### Hull-White transformation –normal distribution 
hwn1<-qnorm(hw1) 
hwn2<-qnorm(hw2) 
hwn3<-qnorm(hw3) 
hwn4<-qnorm(hw4) 
hwn<-cbind(hwn1,hwn2,hwn3,hwn4) 
fhwn<-fit.norm(hwn) 
rmhwn<-rmnorm(n=1000, fhwn$Sigma,fhwn$mu) 
x5<-pnorm(rmhwn[,1]) 
x6<-pnorm(rmhwn[,2]) 
x7<-pnorm(rmhwn[,3]) 
x8<-pnorm(rmhwn[,4]) 
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y5<-quantile(d[,1],x5) 
y6<-quantile(d[,2],x6) 
y7<-quantile(d[,3],x7) 
y8<-quantile(d[,4],x8) 
rmhwn1<-y5+y6+y7+y8 
rhwnq[i]<-quantile(rmhwn1,.01) 
##########  multivariate  normal distribution 
fn<-fit.norm(d) 
rmn<-rmnorm(1000,fn$Sigma,fn$mu); 
rmn1<-rmn[,1]+rmn[,2]+rmn[,3]+rmn[,4] 
rnq[i]<-quantile(rmn1,.05) 
##########  multivariate t distribution 
ft<-fit.mst(d) 
rmt<-rmvt(n=1000, sigma = ft$Sigma, df = ft$nu) 
rmt1<-rmt[,1]+rmt[,2]+rmt[,3]+rmt[,4] 
rtq[i]<-quantile(rmt1,.01) 
##########  multivariate: Gauss-Copula 
mod.gauss <- fit.gausscopula(U); 
rgc <- rcopula.gauss(1000,d=4,Sigma=mod.gauss$P); 
rmgc1<-quantile(a[i,],rgc[,1])+quantile(b[i,],rgc[,2])+quantile(c[i,],rgc[,3])+quantile(dd[i,],rgc[,4]) 
rgq[i]<-quantile(rmgc1,.01) 
##########  multivariate: t Copula 
mod.t <- fit.tcopula(U); 
rtc <- rcopula.t(1000,d=4,Sigma=mod.t$P,df=mod.t$nu); 
rmtc1<-quantile(a[i,],rtc[,1])+quantile(b[i,],rtc[,2])+quantile(c[i,],rtc[,3])+quantile(dd[i,],rtc[,4]) 
rtcq[i]<-quantile(rmtc1,.01) 
##########  multivariate: Clayton Copula 
mod.g<- fit.AC(U,name="clayton"); 
rac<-rAC("clayton", n=1000, d=4,theta =mod.g$theta); 
rmac1<-quantile(a[i,],rac[,1])+quantile(b[i,],rac[,2])+quantile(c[i,],rac[,3])+quantile(dd[i,],rac[,4]) 
racq[i]<-quantile(rmac1,.01) 
} 
 
########To plot the kernel densities of the daily exchange rate returns ########  
 plot(density(usd),main="Kernel density of INR-USD exchange rate") 
plot(density(eur),main="Kernel density of INR-EURO exchange rate") 
plot(density(usd),main="Kernel density of INR-USD exchange rate") 

plot(density(gbp),main="Kernel density of INR-GB.Pound exchange rate") 

plot(density(chf),main="Kernel density of INR-CHF (swiss franc) exchange rate") 

plot(density(rnorm(2738)),main="Kernel density of a typical standard normal variable") 
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Annex V 

 
1. Estimation of model I (multivariate normal distribution) 

Σ
^

 

  usd chf eur gbp 
usd 1.067    
chf 0.356 0.987   
eur 0.378 0.908 0.999  
gbp 0.374 0.734 0.684 0.999

ρ
^

 

  usd chf eur gbp 
usd 1    
chf 0.347 1   
eur 0.366 0.915 1  
gbp 0.363 0.74 0.685 1

μ
^

  :     
 

 

usd chf eur gbp 
-0.0033 0.028 0.03 0.011

Log likelihood:   -10780.55 
 
2. Estimation of model II (multivariate t-distribution) 

Σ
^

 

  usd chf eur gbp 
usd 0.404    
chf 0.135 0.635   
eur 0.137 0.597 0.645  
gbp 0.147 0.463 0.448 0.633

ρ
^

 

  usd chf eur gbp 
usd 1    
chf 0.267 1   
eur 0.268 0.933 1  
gbp 0.292 0.731 0.701 1

μ
^

  :     
 

 

usd chf eur gbp 
-0.0172 0.025 0.015 0.024

ν
^

    :        4.114553 
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Log likelihood:  -9987.231 
 
3. Estimation of Model III 

Σ
^

 

  usd chf eur gbp 
usd 0.9962    
chf 0.2988 0.9955   
eur 0.3178 0.9103 0.9953  
gbp 0.3275 0.7330 0.6814 0.9956

ρ
^

 

  usd chf eur gbp 
usd 1.0000    
chf 0.3001 1.0000   
eur 0.3192 0.9145 1.0000  
gbp 0.3289 0.7363 0.6845 1.0000

μ
^

  :     
 

 

usd chf eur gbp 
0.0114 0.0016 0.0017 0.0015

Log likelihood:   -10756.55 
 
4. Estimation of Model IV. 

Σ
^

 

  usd chf eur gbp 
usd 2.5954       
chf 0.3328 0.7538     
eur 0.3293 0.6968 0.7394   
gbp 0.3781 0.5599 0.5337 0.7865

ρ
^

 

  usd chf eur gbp 
usd 1    
chf 0.238 1   
eur 0.238 0.933 1  
gbp 0.265 0.727 0.7 1

ν
^

    :        3.231079 

   :     μ
^

 

 

usd chf eur gbp 

0.0037 
-

0.0109 
-

0.0191 0.0045 

Log likelihood:   -13588.47 
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5. Estimation of Model V (Normal Copula) 
P

^  
===================================== 
  usd1 chf1 eur1 gbp1
usd1 1       
chf1 0.3015 1.0000     
eur1 0.3205 0.9149 1.0000   
gbp1 0.3302 0.7374 0.6858 1

 
Log likelihood   3409.397 
 
 
 
6. Estimation of Model VI (Student-t copula) 
P

^  
===================================== 
  usd1 chf1 eur1 gbp1
usd1 1       
chf1 0.2832 1     
eur1 0.2873 0.9299 1   
gbp1 0.3148 0.7332 0.7000 1

 
ν:     5.807568 
 
Log likelihood:   3694.966 
 
 
 
7. Estimation of Model VII (Clayton copula) 
 
Theta:  0.8030917 
 
Log likelihood:   1484.095 
 
 

 

_____________________________________________________________________ 
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