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Abstract

Recently introduced C-divergence estimators as well as the associated test statis-

tics have shown a good robustness behavior. However, one shortcoming of these test

statistics is that their asymptotic distribution, in general, is not a chi-square distri-

bution but a linear combination of chi-square distributions. In this paper, therefore,

we consider Wald-type test statistics based on minimum C-divergence estimators

to overcome this shortcoming. We establish that this family of test statistics is a

chi-square distribution and compute an approximation of the power function under

simple null hypothesis and composite null hypothesis. We calculate both first order

and second order influence function of the Wald-type test statistics, based on which

the robustness of the family of test statistics can be inferred. Both simulated and

real data examples have been shown as part of numerical results.
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Robust Wald-type Test Statistics based on
Minimum C-divergence Estimators

1. Introduction

In the last few years many papers have been published based on minimization of a

suitable statistical distance or divergence in order to present robust estimators in para-

metric inference as well as robust parametric tests based on them. Many of the statistical

distances or divergences are members of the φ-divergences or the Bregman’s distance. In

the first case, the most important subfamily is the Cressie and Read (CR) family of di-

vergence measures (Pardo, 2006) while in the second case i.e., Bregman distances, the

most important family is the density power divergence (DPD) considered for the first

time in Basu et al. (1998). Based on these two divergence families (CR and DPD), the

C-divergence family was introduced as a generalization of the CR divergence and the

DPD (Maji et al., 2018). The minimum C-divergence estimators (MCDEs), based on

C-divergence family, manifested substantially superior performance, compared to likeli-

hood ratio test, especially in the presence of outliers. On the other hand, without outliers

the test statistics were found to be competitive, in general, to the likelihood ratio test.

Therefore, the estimators as well as test statistics based on C-divergence measures can

serve as useful practical tools in robust statistics.

The test statistics based on C-divergence measures, considered in Maji et al. (2018),

however, have two small shortcomings. The first is in relation to get the C-divergence

measure between two populations in a concrete family of probability distributions. The

functional form usually does not boil down to a simpler form and we need to go for

numerical methods to evaluate them. While the second one is in relation to the asymptotic

distribution of the above test statistics, as in many situations, it is a linear combination

of independent chi-squared random variables instead of a chi-squared distribution. It

is true that in this moment there are many procedures that can be used while working

with linear combination of chi-squared random variables but it is more useful to have a

chi-squared distribution as the asymptotic distribution of the test statistics. For similar

use of the single chi-squared distribution instead of the linear combination of the chi-

squared distributions, see Basu et al. (2016). To overcome the above mentioned issues, we

introduce Wald-type tests based on MCDEs in this paper. The architecture of this paper

is in similar lines of Basu et al. (2016), but the motivation of the paper differentiates it as

well. We show that in this case the asymptotic distribution is a chi-squared distribution

and further show that the Wald-type tests based on MCDEs show robust properties. Rest

of the paper is organized as follows. Section 2 presents some results obtained in Maji et

al. (2018). The Wald-type test statistics based on the MCDEs are analysed in Section 3.

The asymptotic distribution is obtained for the simple as well as for the composite null

hypothesis in Section 3. Some approximations to the power function are also prescribed

in the same section. The influence function of the Wald-type tests based on the MCDEs
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are obtained in Section 4. A simulation study is carried out in Section 5. Some real data

examples are considered in Section 6. A small discussion about the tuning parameter

appearing in the Wald-type tests is developed in Section 7. Concluding remarks are in

Section 8.

2. Background: The C-Divergence

In this section, we pay special attention to the definition of the C-divergence mea-

sure, the MCDEs as well as the asymptotic distribution of the MCDEs.

2.1 C-Divergence Measure and the MCDEs

Let G denote the family of all distributions having densities with respect to the

Lebesgue measure or the counting measure. Given two densities g and f in G, the

C-divergence measure is defined as:

C(g, f) =

∫
N

(
g(x)

f(x)
− 1

)
f 1+α(x) dx (1)

where g
f
−1 = υ is the Pearson residual, α ∈ (−∞,∞) is the tuning parameter and N(υ)

is a function satisfying following properties. N(·) is thrice differentiable and strictly

convex on [−1,∞) with N(0) = 0 and N ′(0) = 0. The function N(·) itself may depend

on one or more tuning parameters. Note that the recently developed S-divergence family

of Ghosh et al. (2017) becomes a particular subfamily of our general C-divergence family

where

N(υ) = Nα,λ(υ) =
1

A
− 1 + α

AB
(1 + υ)A +

1

B
(1 + υ)1+α, α ≥ 0, λ ∈ R (2)

with A = 1 + λ(1− α) and B = α− λ(1− α). Note that N(0) = 0 by default.

One prominent new member of the C-divergence family can be obtained by choosing

N(υ) as the function ξλ(υ) where ξλ(υ) = (υ+1)λ+1−(υ+1)
λ(λ+1)

− υ
λ+1

. The resulting subfamily,

which we refer to as the Generalized Power Divergence (GPDα,λ) family, has the form:

GPDα,λ(g, f) =

∫
ξλ(x)f 1+α(x) dx (3)

Note that, by substituting α = 0 in Equation (3), one gets the ordinary power divergence

family.

GPDα=0,λ(g, f) =

∫
ξλ(x)f(x) dx

=

∫ [
1

λ(λ+ 1)

{
g(x)

[(
g(x)

f(x)

)λ
− 1

]}
− g(x)− f(x)

λ+ 1

]
dx (4)

As a particular member of the GPDα,λ(g, f) family and keeping α = λ gives a scaled
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version of the DPD family:

GPDα,α(g, f) =

∫ {
f(x)1+α −

(
1 +

1

α

)
g(x)f(x)α +

1

α
g(x)1+α

}
dx, α > 0 (5)

with tuning parameter α. It can be seen that

lim
λ→0

GPDα=0,λ(g, f) = lim
α→0

GPDα,α(g, f) =

∫
g(x) log

g(x)

f(x)
dx (6)

i.e., the Kullback-Leibler divergence between the density functions g and f . For more

details about

GPDα=0,λ(g, f) = CR(g, f)

and GPDα,α(g, f) = DPD(g, f), see Pardo (2006) and Basu et al. (2011) respectively.

Let us consider a random sample X1, X2, . . . , Xn from the true density g which we

model by the parametric family F = {fθ : θ ∈ Θ ⊆ Rp}. We are interested in estimating

the parameter θ. The minimum C-divergence functional Tα(G) at G is defined as:

C(g, fTα(G)) = min
θ∈Θ

C(g, fθ)

where C(·, ·) is as defined in Equation (1).

Next, in order to estimate θ based on the observed data, we have to minimize C(ĝn, fθ)

with respect to θ, where ĝn is the vector of relative frequencies or some continuous density

estimate based on the data according to whether the set-up is discrete or continuous. The

estimating equation is then given by:

−
∫
{(1 + α)N(υn(x))−N ′(υn(x))(υn(x) + 1)}f 1+α

θ (x)uθ(x) dx = 0p (7)

where υn(x) = ĝn(x)
fθ(x)

− 1 and uθ(x) = ∂
∂θ

log fθ(x) is the likelihood score function. For

simplicity, we rewrite Equation (7) as
∫
K(υn(x))f 1+α

θ (x)uθ(x) dx = 0p with

K(υ) = N ′(υ)(υ + 1)− (1 + α)N(υ). (8)

2.2 Asymptotic Properties of the Minimum C-Divergence Estimators

Let θ̂N,α be the MCDEs based on the random sample X1, X2, . . . , Xn. Maji et

al. (2018) have shown that under standard set of assumptions for both discrete and

continuous models (for g = fθ)

√
n(θ̂N,α − θ)

L−−−→
n→∞

Np(0p,Σα(θ)) (9)

where

Σα(θ) = J−1
α (θ)Vα(θ)J−1

α (θ) (10)
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Np denotes a normal distribution of order p, Jα(θ) and Vα(θ) are defined for both discrete

and continuous models separately in Maji et al. (2018). We have the following forms of

Jα(θ) and Vα(θ) for the discrete models:

Jα(θ) =
∑

uθ(x)uTθ (x)f 1+α
θ (x); (11)

Vα(θ) =
∑

uθ(x)uTθ (x)f 1+2α
θ (x)− ιιT ; (12)

ι =
∑

uθ(x)f 1+α
θ (x). (13)

The forms of Jα(θ) and Vα(θ) for the continuous models are as follows:

Jα(θ) =

∫
ũθ(x)ũθ(x)T{f ∗θ(x)}1+αdx; (14)

Vα(θ) = Var

[∫
W (x,X, h)(f ∗θ(x))αũθ(x)dx

]
(15)

where f ∗θ(x) =
∫
W (x, y, hn) dFθ(y), ũθ(x) = ∂

∂θ
log f ∗θ(x), the kernel W is defined in

terms of a symmetric nonnegative density function w(·) as:

W (x,Xi, hn) =
1

hn
w

(
x−Xi

hn

)
,

where W (x, y, hn) is a smooth kernel function with bandwidth hn, ∇ denotes the gradient

with respect to θ and Fθ is the distribution function corresponding to fθ.

3. Wald-type Tests Based on the MCDE: Definition

and Asymptotic Distribution

In the last few years it has been very common in the statistical literature to consider

Wald tests based on the minimum distance estimators instead of the maximum likelihood

estimator. The resulting tests have an excellent behavior in relation to robustness with

minimal loss of efficiency (Basu et al., 2016, 2017, 2018 and Ghosh et al. 2016). Based

on the results presented in Section 2 we introduce Wald-type test statistics based on the

MCDEs in order to test simple and composite null hypothesis.

3.1 The Simple Null Hypothesis

We define a family of Wald-type test statistics based on the MCDEs for testing the

null hypothesis

H0 : θ = θ0 against H1 : θ 6= θ0. (16)

Definition 1. Let θ̂N,α be the MCDE of θ. The family of the Wald-type test statistics
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for testing the null hypothesis in Equation (16) is given by:

WC
n (θ0) = n(θ̂N,α − θ0)TΣ−1

α (θ0)(θ̂N,α − θ0) (17)

where Σα(θ0) is as defined in Equation (10).

Theorem 1. The asymptotic null distribution of the proposed Wald-type test statistics,

given in Equation (17), is a chi-squared (χ2) distribution with p degrees of freedom.

Proof: Under the null hypothesis H0 defined in equation (16),
√
n(θ̂N,α − θ0)

L−−−→
n→∞

Np(0,Σα(θ0)) as p be the dimension of θ and using standard properties for obtaining

the asymptotic distribution of a quadratic form, we may show that the Wald-type test

statistics defined in Equation (17) has a χ2 distribution with p degrees of freedom. By
L−→

we are denoting convergence in law.

Based on the previous result we reject H0 given in equation (16) if

WC
n (θ0) > χ2

p,β (18)

where χ2
p,β be the (1− β)-th quantile of χ2 distribution with p degrees of freedom.

We are going to give a result that will be important in order to get an approximation

of the power function of the Wald-type test statistics given in Expression (18).

Theorem 2. Let θ∗ be the true value of parameter with θ∗ 6= θ0. Then the convergence

√
n
(
l
(
θ̂N,α

)
− l (θ∗)

)
L−−−→

n→∞
Np(0, σ

2
W (θ∗)) (19)

holds, where

l(θ) = (θ − θ0)TΣ−1
α (θ)(θ − θ0) (20)

and

σ2
W (θ∗) = 4(θ∗ − θ0)TΣ−1

α (θ∗)(θ∗ − θ0). (21)

Proof: A first order Taylor series expansion of l(θ) at θ̂N,α around θ∗ gives

l(θ̂N,α)− l(θ∗) =

(
∂l(θ)

∂θ

)
θ=θ∗

(θ̂N,α − θ∗) + op(||θ̂N,α − θ∗||). (22)

The asymptotic distribution of
√
n
(
l
(
θ̂N,α

)
− l (θ∗)

)
coincides with the asymptotic dis-

tribution of
√
n

(
∂l(θ)

∂θ

)
θ=θ∗

(θ̂N,α − θ∗). (23)

Now,
√
n(θ̂N,α − θ∗)

L−−−→
n→∞

Np(0,Σα(θ∗)) and using the properties of the normal distri-

bution we get the desired result.

Based on the previous result we can give an approximation to the power function for

the testing procedure based on the Wald-type statistics defined in equation (18).
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Remark 1. The power function of the testing procedure based on the Wald-type test

statistics, given in Equation (18), in θ∗ is given by:

πnN,α(θ∗) = Pθ=θ∗
(
WC
n (θ0) > χ2

p,β

)
= Pθ=θ∗

(
n l(θ̂N,α) > χ2

p,β

)
= Pθ=θ∗

(
n l(θ̂N,α)− n l(θ∗) > χ2

p,β − n l(θ∗)
)

= Pθ=θ∗

(√
n (l(θ̂N,α)− l(θ∗)) >

χ2
p,β√
n
−
√
n l(θ∗)

)

= Pθ=θ∗

√n (l(θ̂N,α)− l(θ∗))
σW (θ∗)

>

χ2
p,β√
n
−
√
n l(θ∗)

σW (θ∗)


= 1− Φn

 χ2
p,β√
n
−
√
n l(θ∗)

σW (θ∗)


where Φn(x) tends uniformly to the standard normal distribution function Φ(x) and

σ2
W (θ∗) is given in Theorem 2. Based on this result, an approximation of the power

function of the Wald-type test statistics at θ∗ is 1− Φ

(
χ2p,β√
n
−
√
n l(θ∗)

σW (θ∗)

)
.

Now we are going to derive the asymptotic distribution of Wald-type test statistics,

WC
n (θ0), under contiguous alternative hypotheses described by:

H1,n : θn = θ0 +
1√
n
d (24)

where d is a fixed vector in Rp such that θn ∈ Θ ⊆ Rp for all n.

Theorem 3. Under the contiguous alternative hypotheses given in Equation (24), the

asymptotic distribution of the proposed Wald-type test statistics WC
n (θ0) is a non-central

χ2 with p degrees of freedom and non-centrality parameter

δC = dTΣα(θ0)d. (25)

Proof:

√
n(θ̂N,α − θ0) =

√
n(θ̂N,α − θn) +

√
n(θn − θ0) =

√
n(θ̂N,α − θn) + d

Under H1,n it follows that,

√
n(θ̂N,α − θn)

L−−−→
n→∞

Np(0,Σα(θ0))

and √
n(θ̂N,α − θ0)

L−−−→
n→∞

Np(d,Σα(θ0)).
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On the other hand, WC
n = Y TY , where Y = Σ

− 1
2

α (θ0)(θ̂N,α − θ0), and under H1,n,

Y
L−−−→

n→∞
Np(Σ

− 1
2

α (θ0)d, Ip)

where Ip is the identity matrix of order p. Therefore using the properties for obtaining

the asymptotic distribution of quadratic forms, we have WC
n (θ0) = Y TY

L−−−→
n→∞

χ2
p(δ

C)

with δC = dTΣα(θ0)d; here χ2
p(δ

C) denotes a non-central χ2 distribution with p degrees

of freedom and non-centrality parameter δC.

The result of this theorem can be used to give an approximation of the power function

at θ∗. We have θ∗ = θ0 + (θ∗ − θ0) = θ0 + 1√
n

√
n(θ∗ − θ0). Now considering d =√

n(θ∗ − θ0), we can apply the previous theorem.

3.2 The Composite Null Hypothesis

We will consider a composite null hypothesis with the restricted parameter space

Θ0 ⊆ Θ defined through a set of r restrictions of the form:

m(θ) = 0 (26)

where m : Rp → Rr. Assume that the p× r matrix

M (θ) =
∂mT (θ)

∂θ
(27)

exists and is continuous in θ, and rank(M (θ)) = r where r ≤ p. We will test the

hypothesis

H0 : θ ∈ Θ0 against H1 : θ /∈ Θ0. (28)

Definition 2. Let θ̂N,α be the MCDE of θ and the family of Wald-type test statistics for

testing the hypothesis given in Equation (28) is defined as:

∗WC
n (θ̂N,α) = n mT (θ̂N,α)[MT (θ̂N,α)Σα(θ̂N,α)M(θ̂N,α)]−1m(θ̂N,α) (29)

where Σα(θ), m and M are defined in Equations (10), (26) and (27) respectively.

Theorem 4. The asymptotic null distribution of the proposed Wald-type test statistics

given in Equation (29) is χ2 with r degrees of freedom.

Proof: Let θ0 ∈ Θ0 be the true value of θ. Using a Taylor series expansion of m(θ)

at θ̂N,α around θ0 we get

m(θ̂N,α) = m(θ0) +MT (θ0)(θ̂N,α − θ0) + op(||θ̂N,α − θ0||)
= MT (θ0)(θ̂N,α − θ0) + op(||θ̂N,α − θ0||) (30)

since from Equation (26), we have m(θ) = 0. Now under H0,
√
n(θ̂N,α − θ0)

L−−−→
n→∞
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Np(0,Σα(θ0)). Therefore, from Equation (30) we get, under H0,

√
n m(θ̂N,α)

L−−−→
n→∞

Np(0,M
T (θ0)Σα(θ0)M (θ0))

As rank(M (θ)) = r, we get

n mT (θ̂N,α)[MT (θ0)Σα(θ0)M (θ0)]−1m(θ̂N,α)
L−−−→

n→∞
χ2
r

Now since mT (θ̂N,α)[MT (θ̂N,α)Σα(θ̂N,α)M (θ̂N,α)]−1m(θ̂N,α) is a consistent estimator of

mT (θ̂N,α)[MT (θ0)Σα(θ0)M(θ0)]−1m(θ̂N,α)

hence under H0,

n mT (θ̂N,α)[MT (θ̂N,α)Σα(θ̂N,α)M(θ̂N,α)]−1m(θ̂N,α)
L−−−→

n→∞
χ2
r

Therefore, we reject the null hypothesis given in Equation (28) if

∗WC
n (θ̂N,α) > χ2

p,β (31)

The following theorem may be used to approximate the power function for the Wald-type

test statistics given in Equation (31). Assume that θ∗ /∈ Θ0(∈ Θ) is the true value of the

parameter so that the unrestricted estimator θ̂N,α
P−−−→

n→∞
θ∗.

Theorem 5. Let l∗(θ1,θ2) = mT (θ1)
[
MT (θ2)Σα(θ2)M (θ2)

]−1
m(θ1). Then

√
n
(
l∗
(
θ̂N,α, θ̂N,α

)
− l∗ (θ∗,θ∗)

)
L−−−→

n→∞
Np(0, σ

∗2
W (θ∗)), (32)

where

σ∗2W (θ∗) =

(
∂l∗(θ,θ∗)

∂θ

)T
θ=θ∗

Σα(θ∗)

(
∂l∗(θ,θ∗)

∂θ

)
θ=θ∗

. (33)

Proof: We note that θ̂N,α
P−−−→

n→∞
θ∗ and using this result we get that l∗

(
θ̂N,α, θ̂N,α

)
and l∗

(
θ̂N,α,θ

∗
)

have the same asymptotic distribution. Now a Taylor series expansion

of l∗(θ̂N,α,θ
∗) around θ∗ gives

l∗
(
θ̂N,α, θ̂N,α

)
− l∗ (θ∗,θ∗) =

(
∂l∗(θ,θ∗)

∂θ

)
θ=θ∗

(θ̂N,α − θ∗) + op(||θ̂N,α − θ∗||). (34)

Using the properties of the normal distribution on Equation (9) we get the desired result.

Remark 2. The power function of the Wald-type test statistics defined in Equation (31)
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at θ∗ is given by:

π∗,nN,α = Pθ=θ∗

(
∗WC

n (θ̂N,α) > χ2
r,β

)
= Pθ=θ∗

(
n l∗

(
θ̂N,α, θ̂N,α

)
> χ2

r,β

)
= Pθ=θ∗

(
n l∗

(
θ̂N,α, θ̂N,α

)
− n l∗(θ∗,θ∗) > χ2

r,β − n l∗(θ∗,θ∗)
)

= Pθ=θ∗

n l∗
(
θ̂N,α, θ̂N,α

)
− n l∗(θ∗,θ∗)

σ∗W (θ∗)
>
χ2
r,β − n l∗(θ∗,θ∗)

σ∗W (θ∗)


= 1− Φn

(
χ2
r,β − n l∗(θ∗,θ∗)

σ∗W (θ∗)

)
where Φn(x) tends uniformly to the standard normal distribution function Φ(x), χ2

r,β be

the (1 − β)-th quantile of χ2 distribution with r degrees of freedom and σ∗W (θ∗) is given

in Theorem 5.

The power function of ∗WC
n (θ̂N,α) at an alternative close to the null hypothesis may

be approximated using contiguous alternative hypothesis. Let θn ∈ Θ − Θ0 be a given

alternative, and let θ0 be the element in Θ0 closest to θn in terms of the Euclidean

distance. We may introduce contiguous alternative hypotheses by considering a fixed

d ∈ Rp and by permitting θn to move towards θ0 as n increases through the relation:

H1,n : θn = θ0 +
1√
n
d. (35)

Another approach will be by relaxing the condition m(θ) = 0r while defining Θ0. Con-

sider the following sequence of parameters {θn} moving towards θ0 according to the set

up:

H∗1,n : m(θn) =
1√
n
δ, (36)

where δ ∈ Rr. Now a first order Taylor series expansion of m(θn) around θ0 gives:

m(θn) = m(θ0) +MT (θ0)(θn − θ0) + o(||θn − θ0||). (37)

Using the relation θn = θ0 + 1√
n
d and m(θ0) = 0 in Equation (37), we get:

m(θn) =
1√
n
MT (θ0)d+ o(||θn − θ0||) (38)

The equivalence relationship between H1,n and H∗1,n is δ = MT (θ0)d when n→∞. In the

following theorem, we show the asymptotic distributions of the Wald-type test statistics
∗WC

n (θ̂N,α) under the alternative hypotheses H1,n and H∗1,n as given by Equations (35)

and (36), respectively.

Theorem 6. The asymptotic distribution of ∗WC
n (θ̂N,α) is given by
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1. Under H1,n, ∗WC
n (θ̂N,α)

L−−−→
n→∞

χ2
r(a), a being the parameter of non-centrality is

given by:

a =
(
dTM (θ0)

[
MT (θ0)Σα(θ0)M(θ0)

]−1
MT (θ0)d

)
2. Under H∗1,n, ∗WC

n (θ̂N,α)
L−−−→

n→∞
χ2
r(b), b being the parameter of non-centrality is given

by:

b =
(
δT
[
MT (θ0)Σα(θ0)M (θ0)

]−1
δ
)

Proof: A first order Taylor series expansion of m(θ̂N,α) around θn gives:

m(θ̂N,α) = m(θn) +MT (θn)(θ̂N,α − θn) + o(||θ̂N,α − θn||)

Using Equation (38) we have:

m(θ̂N,α) =
1√
n
MT (θ0)d+MT (θn)(θ̂N,α − θn) + o(||θ̂N,α − θn||) + o(||θn − θ0||) (39)

Under H1,n we get
√
n(θ̂N,α−θn)

L−−−→
n→∞

Nr(0,Σα(θ0)) Thus from Equation (39) we have:

√
n m(θ̂N,α)

L−−−→
n→∞

Nr(M
T (θ0)d,MT (θ0)Σα(θ0)M(θ0))

From Equation (36) we get, under H∗1,n,
√
nm(θ̂N,α)

L−−−→
n→∞

Nr(δ,M
T (θ0)Σα(θ0)M (θ0)).

We may write ∗WC
n (θ̂N,α) as ZTZ where:

Z =
√
n m(θ̂N,α)[MT (θ0)Σα(θ0)M (θ0)]−

1
2

We know Z
L−−−→

n→∞
Nr([M

T (θ0)Σα(θ0)M (θ0)]−
1
2MT (θ0)d, Ir), where Ir is the identity

matrix of order r. Using a standard result regarding the quadratic form of a normal

variable we get the desired result with the non-centrality parameter

dTM(θ0)[MT (θ0)Σα(θ0)M (θ0)]−1MT (θ0)d.

4. Wald-type Tests Based on the MCDE: Robust Re-

sults

We will now study the robustness of the proposed Wald-type tests discussed in

Section 3 with the help of the influence function of the corresponding test statistics WC
n

and ∗WC
n defined in Definitions 1 and 2, respectively. Ignoring the multiplier n, let us

define the associated statistical functional for the Wald-type test statistics WC
n evaluated

at any distribution G which is given by

WC
n (G) = (T (G)− θ0)TΣ−1

α (θ0)(T (G)− θ0) (40)
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Consider the contaminated distribution Gε = (1− ε)G+ εωv where ωv is the point mass

distribution at the point v. The influence function of WC
n (G) is defined as:

IF (v,WC
n , G) =

∂WC
n (Gε)

∂ε

∣∣∣∣
ε=0

= (T (G)− θ0)TΣ−1
α (θ0)IF (v,T , G) (41)

where IF (v,T , G) is the first order influence function of the minimum C-divergence

estimator (for details see Maji et al., 2018). Assuming the null hypothesis to be true and

under the true model we have T (Fθ0) = θ0 and hence:

IF (v,WC
n , Fθ0) = 0

Thus, we need to go for the higher order influence function of the test statistics to evaluate

the robustness property of the corresponding test. The second order influence function

of the test statistics WC
n at the null model distribution Fθ0 is given by

IF2(v,WC
n , Fθ0) =

∂2WC
n (Gε)

∂ε2

∣∣∣∣
ε=0

.

By further calculations we get:

IF2(v,WC
n , Fθ0) = IF (v,T , Fθ0)

TΣ−1
α (θ0)IF (v,T , Fθ0) (42)

where IF (v,T , Fθ0) has the form:

IF (v,T , Fθ0) =

[∫
f 1+α
θ0

(x)uθ0(x)uTθ0(x) dx

]−1{
uθ0(v)fαθ0(v)−

∫
uθ0(x)f 1+α

θ0
(x) dx

}
.

(43)

The proof is straightforward and thus it is omitted. Now we will find the influence function

of the Wald-type test statistics ∗WC
n in a similar way. Following the same argument as for

∗WC
n , it is easy to show that the first order influence function is zero for this Wald-type

test statistics also. The second order influence function of ∗WC
n under the true model has

the form:

IF2(v,∗WC
n , Fθ0) = IF (v,T , Fθ0)

TM(θ0)Σ−1
α (θ0)MT (θ0)IF (v,T , Fθ0) (44)

5. Simulation Study

In this section, we show simulation analysis using the GPDα,λ family, defined in

Equation (3). Maji et al. (2018) have shown that both the CR family (for α = 0) and

the DPD family (scaled version for α = λ) may be found as particular members of the

GPDα,λ family. We will show that there exist several members of the GPDα,λ family

which show good robustness properties but do not belong to either the CR family or the

12



DPD family. Though we have theoretically proved the distributional result, those results

are asymptotic in nature. In this section, we show that we may get the desired results

for small sample size also.

5.1 The case of the simple null hypothesis

We will start the section with the following simulation study. We have taken the

Poisson model to calculate the level and the power whereas the hypothesis is taken to be

H0 : θ = 5 against H1 : θ 6= 5. The sample size has been kept as n = 20 and the exercise

has been repeated 1000 times whereas the nominal level is 5 per cent. We have taken data

from the Poisson model with parameter θ = 5 to calculate the level under the pure data

and from the 90 percent Poisson(5)+10 percent Poisson(25) model to calculate the level

under the contaminated data. The simulated levels under the pure model are presented

in Table 1, whereas the simulated levels under the contaminated data are presented in

Table 2. For pure data, the tests corresponding to small values of α and small positive

values of λ produce tests which have the closest match between the nominal and observed

levels. Table 2 shows good robust results for α = 0.2, 0.3 and −0.2 ≤ λ ≤ 0.2. Similarly,

we get robust results for other set of values like α = 0.4, 0.5, 0.6 and −0.1 ≤ λ ≤ 0.4.

The observed levels in this region are least effected by the contamination. The robust

region, marked bold in Table 2, moves to more positive values of λ for higher values of α.

Through this study, we can easily show that there are several set of values under which

the test gives robust results but does not fall under the region of either the CR or the DPD

family. We have taken data from the Poisson model with parameter θ = 3 to calculate the

power under the pure data and from the 90 percent Poisson(3) + 10 percent Poisson(15)

model to calculate the power under the contaminated data. The powers under the pure

model and the contaminated model are presented in Tables 3 and 4 respectively. For

pure data, the power is always close to 1. For contaminated data, the power values do

not get distorted for negative λ even for smaller values of α whereas as we move towards

higher values of α, we get good powers for positive λ also. Like Table 2, Table 4 shows

good simulated powers for which the divergences do not belong to either the CR or the

DPD family.

5.2 The case of the composite null hypothesis

To explore the performance of our proposed Wald-type test statistics in case of

the composite null hypothesis, we have performed a simulation study for the case of

a normal population N(µ, σ2). We consider the hypothesis H0 : µ = 0 against the

alternative H1 : µ 6= 0 with σ unknown. In this case, the parameter space is given by

Θ = {(µ, σ) ∈ R2 | µ ∈ R, σ ∈ R+}, and the parameter space under the null distribution

is Θ0 = {(µ, σ) ∈ R2 | µ = 0, σ ∈ R+}. If we consider the function m(θ) = µ where

θ = (µ, σ)T , the null hypothesis H0 can be written as H0 : m(θ) = 0. We observe

that in our case M (θ) = (1, 0)T . The Wald-type test statistics used in this example

are given by Equation (29). We have used the smoothed model approach (Basu and
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Lindsay, 1994) where the model is smoothed with the same kernel function as with the

data. The idea here is to find a minimized distance between the data and the model.

The procedure usually make the data continuous by introducing a kernel and at the same

time, it should be kept in mind that the effect of this kernel to be made as minimal as

possible. It is for this reason both the model and the data are convoluted by the same

kernel so that the distortion made by the kernel to the data is nullified by the use of

the same kernel to the model. In order to do the simulation study we generate data

from the N(0, 1) distribution. Subsequently, the same hypotheses were tested when the

data were generated from the N(−1, 1) distribution. Table 5 gives the simulated level

whereas Table 6 gives the simulated power under the pure normal model. For pure data,

the tests seem to be conservative for most values of α and λ as the calculated levels are

less than 0.05 for most of the cases though the power values are high for most cases.

Now, we show the performance of the proposed Wald-type tests under contamination.

So, we have tested the same hypothesis, but the data have been generated from the

0.9 N(0, 1) + 0.1(10, 1) distribution to calculate the level under contamination. Finally,

we have generated data from the normal mixture 0.9 N(−1, 1) + 0.1(10, 1) to calculate

the power under contamination. Tables 7 and 8 give the simulated level and the simulated

power under the contaminated normal model respectively. For contaminated data, the

calculated levels are less distorted for negative λ even for low values of α. The calculated

levels are close to the desired levels for positive λ for higher values of α. The power values

are less distorted for negative λ by the contamination and the tests have less power as

we move towards positive λ and for lower values of α.

6. Real Data Example

6.1 Drosophila data

We consider the data presented by Woodruff et al. (1984) involving a sex linked

recessive lethal test in drosophila (fruit flies). The data (Table 9) shows the frequencies of

number of recessive lethal mutations observed among the daughters of male flies exposed

to certain doses of a chemical. The observations at values 3 and 4 appear to represent

moderate outliers. Here we use the Poisson model to estimate the parameter θ and we

want to test:

H0 : θ = 0.11 against H1 : θ 6= 0.11.

The choice of the hypothesis comes as a result of the estimation of the parameter after

deleting those outliers. For details, see Maji et al. (2018), Table 3. We have calculated

p-values of the Wald-type tests and presented those values in Tables 10 and 11. Table 10

gives p-values for full data whereas Table 11 gives p-values after deleting those moderate

outliers. By analyzing both tables it can be easily seen that for α close to zero and
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positive λ, the p-values are mostly affected whereas for α = 0.2, 0.3 and smaller negative

values of λ, the effect of the outliers are seen to be minimal.

6.2 Normal examples using real data

In this section, we will analyze two real data sets using a continuous model. The

first data set has been previously presented by Welch (1987) and Simpson (1989). The

data are from an experiment to test a method of reducing faults on telephone lines. The

data in Table 12 pertains 14 matched pairs of areas and provides the ordered differences

between the inverse test rates and the inverse control rates in those areas. The first data

set shows a large number of outliers. We will use a normal model with parameters µ and

σ in this example. Let us now consider testing of the null hypothesis H0 : µ = 0 against

H1 : µ 6= 0, where σ is an unknown nuisance parameter. The parameter space is given by

Θ = {(µ, σ) ∈ R2|µ ∈ R, σ ∈ R+}, and the parameter space under the null distribution is

Θ = {(µ, σ) ∈ R2|µ = µ0, σ ∈ R+}. We may consider the function m(θ) = µ−µ0, where

θ = (µ, σ)T , the null hypothesis H0 can be written as:

H0 : m(θ) = 0.

In this case M(θ) = (1, 0)T . To calculate the minimum GPD estimates, we have used

the kernel density estimator with the Gaussian kernel for the construction of the diver-

gence. The bandwidth hn has been taken as hn = 1.06τnn
−1/5 where τn = mediani|Xi −

medianjXj|/0.6745. The Wald-type test statistics used in this example are given by

Equation (29). Table 13 gives p-values for the full data whereas Table 14 gives p-values

after deleting the large outlier. The test rejects the null hypothesis for all values of α and

λ in case of outliers deleted data whereas the test fails to reject the null hypothesis for

positive λ in case of full data.

The second example involves an experiment done by Charles Darwin (Darwin, 1878).

Charles Darwin had done an experiment involving various types of plants to show the

effect of different fertilization methods. The experiment was used to tell whether self-

fertilized plants and cross-fertilized plants have different growth rates. In this experiment,

one special type of plant viz. Zea Mays, were planted in pots in pairs, one self-fertilized

and the other cross-fertilized and after a time period the height of each plant was measured

and a sample of 15 such paired differences (Table 15) between cross-fertilized minus self-

fertilized were taken. The hypothesis and the corresponding Wald-type test statistics

have been kept same as the example of the telephone fault data. Table 16 gives p-values

for the full data whereas Table 17 gives p-values after deleting two negative outliers. The

test shows similar results like the telephone fault data.
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7. Choice of Tuning Parameter

In this section, we will restrict ourselves to the GPD family and will not go for

the general C-divergence as choice of N(·) requires a separate research. Here we will

give some idea to the users regarding the values of the tuning parameters α and λ to

be used in practical situations. For pure data, we may use α = λ = 0 as it matches

with the likelihood disparity. We may use the data driven approach for contaminated

data as we have shown in the above examples. In order to study the overall robustness

aspect of the divergence method, we may perform an overall minimization of each of the

divergences by considering their tuning parameters to be nuisance parameters varying

within a reasonable range. It may be noted that there are several members of the GPD

family outside either the CR or the DPD family of divergences which show good robust

properties. The region for negative λ and positive α seems to produce good robust results

and we usually require high positive value of α for positive λ to get robust results.

8. Conclusion

In this paper, we have proposed a Wald-type test based on the minimum C-

divergence estimators. We have shown that there exists a direct distributional form

of the Wald-type test statistics and have also developed an asymptotic null distribution

of the Wald-type test statistics and the approximation of the power function under simple

null hypothesis and composite null hypothesis. We have calculated both first order and

second order influence function of the Wald-type test statistics. Both simulated and real

data example have shown that there exists a region of the parameters for which the tests

are found to be robust. We may extend our approach to other divergences.
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Annexure

Table 1: Simulated levels of the GPDα,λ Wald-type tests with pure data under the
Poisson model (sample size 20) for various values of λ and α; the nominal
level is 5%.

λ ↓ α→ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.9 0.274 0.263 0.252 0.242 0.229 0.223 0.218 0.201 0.198 0.188 0.173
−0.8 0.206 0.199 0.192 0.179 0.176 0.176 0.176 0.166 0.16 0.156 0.149
−0.7 0.143 0.146 0.143 0.145 0.142 0.143 0.149 0.146 0.141 0.139 0.134
−0.6 0.111 0.119 0.12 0.121 0.121 0.123 0.128 0.135 0.133 0.131 0.127
−0.5 0.088 0.104 0.103 0.105 0.111 0.12 0.122 0.125 0.129 0.128 0.129
−0.4 0.074 0.082 0.098 0.101 0.1 0.102 0.109 0.115 0.114 0.118 0.122
−0.3 0.066 0.078 0.079 0.088 0.094 0.096 0.102 0.105 0.108 0.109 0.116
−0.2 0.061 0.067 0.079 0.077 0.086 0.089 0.094 0.1 0.097 0.102 0.107
−0.1 0.055 0.061 0.075 0.076 0.08 0.084 0.084 0.092 0.097 0.097 0.1

0 0.053 0.054 0.069 0.075 0.077 0.084 0.081 0.085 0.095 0.093 0.093
0.1 0.05 0.051 0.057 0.069 0.074 0.075 0.079 0.082 0.087 0.092 0.09
0.2 0.051 0.048 0.052 0.06 0.068 0.069 0.073 0.079 0.081 0.091 0.089
0.3 0.054 0.049 0.053 0.054 0.061 0.068 0.071 0.076 0.079 0.084 0.089
0.4 0.057 0.051 0.05 0.052 0.056 0.063 0.066 0.07 0.076 0.082 0.082
0.5 0.061 0.054 0.049 0.051 0.055 0.057 0.061 0.07 0.07 0.074 0.078
0.6 0.061 0.056 0.05 0.048 0.053 0.057 0.056 0.063 0.066 0.07 0.071
0.7 0.068 0.058 0.053 0.048 0.049 0.055 0.052 0.055 0.063 0.066 0.068
0.8 0.074 0.06 0.052 0.049 0.048 0.053 0.051 0.053 0.057 0.061 0.065
0.9 0.079 0.064 0.058 0.049 0.047 0.05 0.051 0.052 0.054 0.056 0.059
1 0.084 0.073 0.06 0.051 0.048 0.047 0.05 0.047 0.05 0.051 0.056
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Table 2: Simulated levels of the GPDα,λ Wald-type tests with contaminated data
under the Poisson model (sample size 20) for various values of λ and α;
the nominal level is 5%.

λ ↓ α→ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.9 0.327 0.317 0.293 0.276 0.263 0.256 0.252 0.237 0.229 0.213 0.205
−0.8 0.243 0.241 0.233 0.226 0.217 0.206 0.196 0.187 0.181 0.174 0.171
−0.7 0.187 0.201 0.194 0.188 0.178 0.174 0.17 0.161 0.159 0.152 0.147
−0.6 0.141 0.156 0.156 0.158 0.153 0.152 0.149 0.145 0.143 0.139 0.138
−0.5 0.12 0.127 0.129 0.13 0.135 0.132 0.129 0.127 0.125 0.12 0.118
−0.4 0.095 0.113 0.115 0.121 0.115 0.119 0.12 0.119 0.113 0.113 0.112
−0.3 0.079 0.101 0.104 0.108 0.107 0.108 0.109 0.11 0.109 0.109 0.112
−0.2 0.086 0.102 0.094 0.099 0.101 0.103 0.104 0.105 0.105 0.104 0.105
−0.1 0.198 0.107 0.086 0.093 0.093 0.096 0.097 0.101 0.104 0.1 0.101

0 0.698 0.134 0.086 0.08 0.081 0.089 0.093 0.094 0.099 0.096 0.098
0.1 0.855 0.191 0.097 0.079 0.075 0.082 0.092 0.09 0.095 0.094 0.095
0.2 0.867 0.809 0.077 0.079 0.07 0.075 0.086 0.088 0.093 0.09 0.092
0.3 0.87 0.858 0.739 0.069 0.074 0.071 0.079 0.081 0.09 0.088 0.089
0.4 0.875 0.866 0.853 0.655 0.066 0.069 0.071 0.082 0.085 0.087 0.087
0.5 0.876 0.87 0.864 0.839 0.581 0.067 0.067 0.073 0.079 0.086 0.085
0.6 0.877 0.875 0.868 0.859 0.816 0.516 0.065 0.067 0.071 0.08 0.083
0.7 0.878 0.875 0.873 0.868 0.86 0.793 0.431 0.065 0.066 0.075 0.08
0.8 0.879 0.878 0.876 0.871 0.864 0.853 0.78 0.356 0.065 0.071 0.076
0.9 0.879 0.879 0.876 0.874 0.868 0.865 0.845 0.755 0.305 0.066 0.073
1 0.88 0.88 0.877 0.877 0.874 0.869 0.86 0.834 0.735 0.257 0.064

Table 3: Simulated powers of the GPDα,λ Wald-type tests with pure data under the
Poisson model (sample size 20) for various values of λ and α; the nominal
level is 5%.

λ ↓ α→ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.9 0.996 0.993 0.991 0.981 0.981 0.979 0.978 0.976 0.971 0.965 0.961
−0.8 0.995 0.992 0.991 0.986 0.984 0.98 0.98 0.976 0.971 0.964 0.962
−0.7 0.998 0.994 0.992 0.989 0.987 0.984 0.976 0.973 0.97 0.969 0.964
−0.6 0.998 0.998 0.994 0.992 0.99 0.986 0.98 0.975 0.97 0.967 0.965
−0.5 0.998 0.998 0.995 0.993 0.99 0.989 0.982 0.977 0.973 0.969 0.962
−0.4 0.998 0.998 0.998 0.993 0.992 0.989 0.98 0.976 0.975 0.969 0.961
−0.3 0.998 0.998 0.998 0.994 0.992 0.99 0.983 0.978 0.971 0.969 0.961
−0.2 0.998 0.998 0.998 0.995 0.992 0.99 0.983 0.979 0.972 0.967 0.962
−0.1 0.998 0.998 0.998 0.996 0.994 0.989 0.984 0.979 0.974 0.967 0.963

0 0.998 0.998 0.998 0.996 0.993 0.99 0.984 0.982 0.976 0.969 0.962
0.1 0.997 0.998 0.998 0.995 0.995 0.99 0.986 0.982 0.978 0.97 0.961
0.2 0.995 0.998 0.998 0.995 0.995 0.99 0.988 0.984 0.98 0.97 0.965
0.3 0.996 0.997 0.997 0.995 0.994 0.992 0.99 0.986 0.981 0.97 0.966
0.4 0.994 0.994 0.996 0.995 0.994 0.992 0.992 0.987 0.982 0.973 0.968
0.5 0.992 0.993 0.996 0.994 0.994 0.992 0.992 0.99 0.984 0.977 0.968
0.6 0.991 0.991 0.994 0.993 0.993 0.993 0.992 0.992 0.984 0.978 0.971
0.7 0.989 0.992 0.992 0.992 0.992 0.993 0.992 0.99 0.987 0.981 0.971
0.8 0.988 0.991 0.99 0.99 0.992 0.993 0.992 0.99 0.988 0.982 0.976
0.9 0.986 0.989 0.99 0.991 0.99 0.992 0.992 0.99 0.988 0.985 0.98
1 0.985 0.986 0.988 0.988 0.988 0.99 0.991 0.989 0.988 0.987 0.981
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Table 4: Simulated powers of the GPDα,λ Wald-type tests with contaminated data
under the Poisson model (sample size 20) for various values of λ and α;
the nominal level is 5%.

λ ↓ α→ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.9 0.995 0.994 0.991 0.985 0.979 0.978 0.976 0.974 0.965 0.956 0.946
−0.8 0.996 0.995 0.992 0.989 0.983 0.979 0.977 0.972 0.965 0.957 0.945
−0.7 0.997 0.996 0.993 0.991 0.986 0.982 0.977 0.971 0.964 0.959 0.948
−0.6 0.997 0.998 0.994 0.992 0.989 0.981 0.978 0.971 0.962 0.957 0.949
−0.5 0.993 0.999 0.996 0.992 0.991 0.985 0.979 0.971 0.963 0.957 0.946
−0.4 0.988 0.999 0.996 0.993 0.991 0.987 0.978 0.971 0.961 0.956 0.941
−0.3 0.983 0.997 0.996 0.994 0.991 0.986 0.98 0.971 0.962 0.948 0.941
−0.2 0.948 0.994 0.997 0.994 0.991 0.986 0.98 0.973 0.961 0.947 0.938
−0.1 0.827 0.99 0.997 0.995 0.991 0.986 0.98 0.976 0.959 0.947 0.936

0 0.54 0.976 0.993 0.995 0.991 0.988 0.982 0.974 0.958 0.945 0.934
0.1 0.481 0.838 0.987 0.995 0.992 0.988 0.982 0.974 0.962 0.946 0.936
0.2 0.567 0.512 0.951 0.991 0.992 0.988 0.983 0.976 0.961 0.947 0.935
0.3 0.609 0.529 0.582 0.972 0.988 0.987 0.982 0.977 0.962 0.95 0.936
0.4 0.649 0.592 0.499 0.671 0.977 0.986 0.983 0.975 0.965 0.95 0.939
0.5 0.688 0.63 0.566 0.496 0.757 0.976 0.98 0.974 0.966 0.952 0.941
0.6 0.72 0.67 0.607 0.54 0.512 0.808 0.971 0.972 0.965 0.951 0.94
0.7 0.743 0.69 0.648 0.597 0.517 0.536 0.855 0.966 0.967 0.956 0.941
0.8 0.757 0.729 0.683 0.625 0.572 0.496 0.556 0.877 0.959 0.958 0.944
0.9 0.774 0.748 0.699 0.664 0.609 0.558 0.495 0.574 0.891 0.952 0.946
1 0.786 0.76 0.732 0.686 0.643 0.597 0.541 0.501 0.586 0.901 0.949

Table 5: Simulated levels of the GPDα,λ Wald-type tests with pure data under the
normal model (sample size 20) for various values of λ and α; the nominal
level is 5%.

λ ↓ α→ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.9 0.048 0.046 0.04 0.037 0.036 0.035 0.033 0.032 0.031 0.029 0.026
−0.8 0.043 0.042 0.037 0.038 0.037 0.037 0.034 0.033 0.031 0.028 0.026
−0.7 0.04 0.041 0.037 0.039 0.038 0.037 0.035 0.034 0.034 0.029 0.028
−0.6 0.04 0.042 0.038 0.039 0.039 0.037 0.035 0.034 0.034 0.031 0.028
−0.5 0.041 0.043 0.038 0.039 0.038 0.037 0.036 0.035 0.034 0.032 0.029
−0.4 0.041 0.044 0.039 0.042 0.038 0.037 0.037 0.035 0.033 0.031 0.031
−0.3 0.041 0.044 0.041 0.043 0.038 0.037 0.037 0.035 0.033 0.031 0.032
−0.2 0.039 0.043 0.041 0.043 0.039 0.037 0.037 0.035 0.033 0.031 0.032
−0.1 0.039 0.042 0.041 0.045 0.039 0.037 0.038 0.035 0.033 0.031 0.031

0 0.039 0.041 0.041 0.045 0.039 0.037 0.038 0.035 0.033 0.031 0.031
0.1 0.039 0.039 0.04 0.045 0.04 0.037 0.037 0.035 0.034 0.031 0.031
0.2 0.039 0.039 0.039 0.045 0.039 0.037 0.037 0.035 0.034 0.031 0.031
0.3 0.039 0.039 0.039 0.042 0.04 0.037 0.037 0.034 0.034 0.032 0.03
0.4 0.04 0.039 0.038 0.041 0.039 0.037 0.037 0.034 0.034 0.032 0.03
0.5 0.04 0.039 0.039 0.039 0.039 0.037 0.037 0.034 0.034 0.032 0.03
0.6 0.042 0.039 0.039 0.038 0.038 0.037 0.038 0.034 0.034 0.031 0.03
0.7 0.044 0.039 0.039 0.037 0.035 0.037 0.038 0.034 0.034 0.031 0.029
0.8 0.047 0.042 0.04 0.036 0.034 0.036 0.038 0.034 0.034 0.031 0.029
0.9 0.05 0.044 0.04 0.037 0.033 0.035 0.037 0.035 0.034 0.031 0.029
1 0.054 0.046 0.04 0.039 0.032 0.035 0.035 0.035 0.033 0.031 0.029
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Table 6: Simulated powers of the GPDα,λ Wald-type tests with pure data under the
normal model (sample size 20) for various values of λ and α; the nominal
level is 5%.

λ ↓ α→ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.9 0.998 0.998 0.998 0.995 0.991 0.985 0.985 0.983 0.98 0.976 0.972
−0.8 0.998 0.998 0.998 0.994 0.989 0.985 0.985 0.983 0.98 0.975 0.97
−0.7 0.998 0.998 0.997 0.993 0.989 0.985 0.985 0.983 0.98 0.976 0.97
−0.6 0.997 0.997 0.996 0.992 0.989 0.985 0.985 0.983 0.98 0.976 0.971
−0.5 0.997 0.997 0.995 0.992 0.99 0.985 0.985 0.983 0.982 0.976 0.971
−0.4 0.997 0.997 0.995 0.992 0.99 0.986 0.985 0.984 0.983 0.975 0.971
−0.3 0.997 0.995 0.995 0.992 0.99 0.987 0.985 0.984 0.982 0.975 0.971
−0.2 0.997 0.996 0.995 0.993 0.99 0.987 0.985 0.984 0.982 0.975 0.971
−0.1 0.996 0.996 0.995 0.994 0.992 0.987 0.985 0.984 0.982 0.975 0.971

0 0.996 0.996 0.995 0.994 0.992 0.987 0.986 0.984 0.982 0.975 0.971
0.1 0.996 0.996 0.995 0.995 0.992 0.988 0.987 0.983 0.982 0.975 0.972
0.2 0.996 0.996 0.995 0.995 0.992 0.988 0.987 0.984 0.982 0.975 0.972
0.3 0.995 0.996 0.995 0.995 0.993 0.988 0.988 0.984 0.982 0.975 0.972
0.4 0.994 0.996 0.995 0.995 0.993 0.989 0.987 0.985 0.982 0.976 0.971
0.5 0.994 0.996 0.995 0.995 0.993 0.99 0.987 0.985 0.982 0.979 0.971
0.6 0.994 0.995 0.995 0.995 0.995 0.99 0.987 0.985 0.982 0.979 0.971
0.7 0.994 0.994 0.995 0.995 0.995 0.991 0.987 0.984 0.982 0.979 0.972
0.8 0.994 0.994 0.995 0.995 0.995 0.991 0.988 0.985 0.983 0.979 0.972
0.9 0.994 0.994 0.993 0.995 0.995 0.991 0.988 0.985 0.983 0.978 0.973
1 0.994 0.994 0.993 0.995 0.995 0.991 0.988 0.985 0.983 0.979 0.974

Table 7: Simulated levels of the GPDα,λ Wald-type tests with contaminated data
under the normal model (sample size 20) for various values of λ and α; the
nominal level is 5%.

λ ↓ α→ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.9 0.073 0.069 0.069 0.067 0.067 0.062 0.057 0.055 0.048 0.046 0.046
−0.8 0.071 0.07 0.071 0.067 0.066 0.062 0.057 0.054 0.047 0.046 0.046
−0.7 0.072 0.071 0.07 0.066 0.066 0.062 0.057 0.054 0.048 0.047 0.047
−0.6 0.071 0.073 0.07 0.068 0.066 0.062 0.057 0.053 0.048 0.048 0.048
−0.5 0.071 0.073 0.069 0.067 0.065 0.062 0.057 0.053 0.049 0.048 0.048
−0.4 0.072 0.071 0.069 0.067 0.066 0.062 0.057 0.053 0.049 0.048 0.048
−0.3 0.073 0.073 0.069 0.067 0.064 0.061 0.057 0.055 0.049 0.048 0.047
−0.2 0.077 0.071 0.069 0.067 0.065 0.063 0.057 0.055 0.049 0.048 0.047
−0.1 0.12 0.081 0.07 0.067 0.066 0.063 0.057 0.055 0.049 0.048 0.047

0 0.176 0.095 0.071 0.067 0.066 0.063 0.057 0.055 0.049 0.048 0.047
0.1 0.888 0.108 0.073 0.067 0.067 0.063 0.057 0.055 0.049 0.048 0.047
0.2 0.888 0.885 0.07 0.065 0.065 0.063 0.056 0.055 0.049 0.048 0.047
0.3 0.888 0.887 0.873 0.065 0.066 0.061 0.056 0.055 0.049 0.047 0.047
0.4 0.889 0.887 0.886 0.855 0.064 0.06 0.055 0.054 0.049 0.047 0.047
0.5 0.89 0.888 0.886 0.886 0.816 0.059 0.055 0.053 0.05 0.047 0.046
0.6 0.89 0.888 0.886 0.886 0.885 0.765 0.055 0.053 0.049 0.047 0.046
0.7 0.89 0.89 0.886 0.886 0.886 0.882 0.689 0.053 0.049 0.047 0.046
0.8 0.891 0.89 0.886 0.886 0.886 0.886 0.881 0.607 0.048 0.046 0.046
0.9 0.891 0.89 0.887 0.886 0.886 0.886 0.886 0.88 0.508 0.045 0.044
1 0.891 0.891 0.888 0.886 0.885 0.886 0.886 0.886 0.872 0.409 0.044
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Table 8: Simulated powers of the GPDα,λ Wald-type tests with contaminated data
under the normal model (sample size 20) for various values of λ and α; the
nominal level is 5%.

λ ↓ α→ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.9 0.985 0.986 0.982 0.978 0.977 0.973 0.969 0.963 0.961 0.954 0.947
−0.8 0.985 0.986 0.982 0.979 0.977 0.974 0.969 0.963 0.96 0.954 0.946
−0.7 0.986 0.987 0.982 0.979 0.977 0.974 0.969 0.962 0.96 0.954 0.946
−0.6 0.986 0.986 0.982 0.979 0.976 0.974 0.969 0.962 0.96 0.953 0.947
−0.5 0.986 0.986 0.982 0.979 0.976 0.974 0.968 0.962 0.96 0.953 0.947
−0.4 0.985 0.985 0.982 0.979 0.976 0.973 0.968 0.963 0.96 0.954 0.947
−0.3 0.984 0.985 0.982 0.98 0.976 0.972 0.969 0.963 0.959 0.954 0.947
−0.2 0.981 0.988 0.982 0.98 0.976 0.972 0.968 0.963 0.96 0.954 0.947
−0.1 0.958 0.988 0.981 0.98 0.976 0.972 0.968 0.963 0.96 0.955 0.948

0 0.56 0.755 0.979 0.973 0.969 0.968 0.96 0.004 0.958 0.951 0.946
0.1 0.523 0.695 0.977 0.967 0.963 0.965 0.959 0.956 0.956 0.946 0.945
0.2 0.562 0.521 0.918 0.964 0.96 0.957 0.962 0.961 0.957 0.95 0.948
0.3 0.626 0.486 0.599 0.969 0.967 0.958 0.962 0.959 0.956 0.952 0.941
0.4 0.651 0.484 0.491 0.707 0.967 0.969 0.964 0.959 0.955 0.95 0.947
0.5 0.673 0.528 0.449 0.534 0.791 0.969 0.959 0.962 0.955 0.95 0.948
0.6 0.692 0.569 0.439 0.437 0.602 0.841 0.965 0.959 0.958 0.95 0.947
0.7 0.716 0.618 0.463 0.416 0.464 0.67 0.876 0.956 0.955 0.948 0.944
0.8 0.737 0.646 0.5 0.409 0.407 0.502 0.697 0.885 0.957 0.948 0.946
0.9 0.749 0.663 0.546 0.423 0.388 0.423 0.558 0.742 0.902 0.947 0.947
1 0.771 0.688 0.579 0.454 0.386 0.372 0.444 0.598 0.765 0.905 0.949

Table 9: The Drosophila data

Recessive lethal count
Values 0 1 2 3 4 ≥ 5
Observed Frequency 23 3 0 1 1 0

Table 10: Calculated p-value of the GPDα,λ Wald-type tests using the drosophila
data (full data)

λ ↓ α→ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.9 0.39 0.382 0.521 0.681 0.829 0.958 0.932 0.84 0.761 0.696 0.641
−0.8 0.694 0.622 0.742 0.884 0.994 0.893 0.81 0.741 0.684 0.635 0.593
−0.7 0.878 0.738 0.838 0.967 0.923 0.835 0.763 0.703 0.653 0.611 0.574
−0.6 0.974 0.806 0.888 0.992 0.887 0.804 0.737 0.683 0.637 0.599 0.565
−0.5 0.82 0.855 0.913 0.97 0.868 0.787 0.723 0.671 0.627 0.591 0.558
−0.4 0.63 0.905 0.926 0.959 0.857 0.777 0.714 0.663 0.621 0.585 0.554
−0.3 0.401 0.98 0.936 0.956 0.852 0.771 0.708 0.658 0.616 0.581 0.55
−0.2 0.193 0.873 0.953 0.956 0.852 0.769 0.705 0.654 0.612 0.578 0.547
−0.1 0.076 0.608 0.999 0.955 0.855 0.77 0.704 0.652 0.61 0.575 0.545

0 0.029 0.301 0.869 0.94 0.857 0.771 0.704 0.651 0.608 0.573 0.543
0.1 0.012 0.118 0.605 0.884 0.852 0.773 0.705 0.651 0.607 0.572 0.541
0.2 0.006 0.046 0.309 0.737 0.825 0.772 0.707 0.651 0.607 0.57 0.54
0.3 0.003 0.019 0.134 0.49 0.747 0.758 0.706 0.652 0.607 0.57 0.539
0.4 0.002 0.009 0.058 0.261 0.584 0.715 0.698 0.651 0.607 0.569 0.538
0.5 0.001 0.005 0.027 0.127 0.377 0.614 0.672 0.647 0.606 0.569 0.537
0.6 0.001 0.003 0.014 0.063 0.213 0.456 0.61 0.631 0.603 0.568 0.536
0.7 0 0.002 0.008 0.033 0.115 0.294 0.499 0.593 0.593 0.566 0.536
0.8 0 0.001 0.004 0.018 0.064 0.176 0.359 0.516 0.569 0.559 0.533
0.9 0 0.001 0.003 0.011 0.037 0.104 0.237 0.406 0.518 0.543 0.529
1 0 0.001 0.002 0.007 0.022 0.063 0.15 0.29 0.435 0.51 0.519
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Table 11: Calculated p-value of the GPDα,λ Wald-type tests using the drosophila
data (outliers deleted data)

λ ↓ α→ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.9 0.382 0.477 0.576 0.674 0.764 0.843 0.911 0.969 0.984 0.947 0.918
−0.8 0.649 0.732 0.811 0.881 0.94 0.991 0.968 0.935 0.909 0.89 0.875
−0.7 0.789 0.857 0.918 0.971 0.985 0.949 0.92 0.898 0.881 0.868 0.859
−0.6 0.874 0.931 0.981 0.978 0.943 0.915 0.894 0.877 0.865 0.857 0.851
−0.5 0.932 0.98 0.978 0.944 0.916 0.895 0.878 0.865 0.857 0.849 0.846
−0.4 0.973 0.984 0.949 0.921 0.898 0.881 0.866 0.856 0.85 0.845 0.842
−0.3 0.995 0.959 0.929 0.904 0.884 0.87 0.859 0.85 0.845 0.842 0.84
−0.2 0.971 0.939 0.912 0.891 0.874 0.862 0.853 0.846 0.842 0.839 0.838
−0.1 0.951 0.922 0.899 0.88 0.866 0.855 0.847 0.842 0.839 0.837 0.836

0 0.936 0.909 0.888 0.872 0.859 0.85 0.844 0.839 0.837 0.836 0.835
0.1 0.922 0.899 0.879 0.865 0.854 0.846 0.841 0.837 0.835 0.834 0.835
0.2 0.91 0.889 0.872 0.859 0.85 0.842 0.838 0.835 0.834 0.833 0.834
0.3 0.901 0.88 0.865 0.854 0.845 0.84 0.836 0.833 0.832 0.832 0.833
0.4 0.892 0.874 0.86 0.849 0.842 0.837 0.833 0.832 0.831 0.831 0.832
0.5 0.885 0.868 0.855 0.846 0.839 0.835 0.831 0.83 0.83 0.831 0.832
0.6 0.879 0.863 0.851 0.842 0.837 0.833 0.83 0.829 0.829 0.83 0.831
0.7 0.873 0.858 0.847 0.84 0.834 0.83 0.829 0.828 0.829 0.829 0.831
0.8 0.868 0.853 0.844 0.836 0.832 0.829 0.827 0.827 0.828 0.829 0.83
0.9 0.863 0.85 0.841 0.834 0.83 0.828 0.826 0.826 0.827 0.828 0.83
1 0.859 0.846 0.837 0.832 0.829 0.826 0.825 0.825 0.826 0.827 0.83

Table 12: The Telephone Fault Data

Pair 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Difference −988 −135 −78 3 59 83 93 110 189 197 204 229 289 310

Table 13: Calculated p-value of the GPD Wald-type tests using the telephone fault
data (full data)

λ ↓ α→ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.9 0 0 0.001 0.001 0.001 0.002 0.002 0.003 0.004 0.005 0.006
−0.8 0.001 0 0.001 0.001 0.001 0.002 0.002 0.003 0.004 0.005 0.006
−0.7 0.001 0 0.001 0.001 0.001 0.002 0.002 0.003 0.004 0.005 0.006
−0.6 0.001 0 0.001 0.001 0.001 0.002 0.002 0.003 0.004 0.005 0.006
−0.5 0.001 0 0.001 0.001 0.001 0.002 0.002 0.003 0.004 0.005 0.006
−0.4 0.001 0 0.001 0.001 0.001 0.002 0.002 0.003 0.004 0.005 0.006
−0.3 0.001 0 0.001 0.001 0.001 0.002 0.002 0.003 0.004 0.005 0.006
−0.2 0.002 0 0 0.001 0.001 0.002 0.002 0.003 0.004 0.005 0.006
−0.1 0 0 0 0.001 0.001 0.002 0.002 0.003 0.004 0.005 0.006

0 0 0 0 0.001 0.001 0.002 0.002 0.003 0.004 0.005 0.006
0.1 0.774 0.21 0 0.001 0.001 0.002 0.002 0.003 0.004 0.005 0.006
0.2 0.865 0.518 0.002 0 0.001 0.002 0.002 0.003 0.004 0.005 0.006
0.3 0.928 0.665 0.275 0.001 0.001 0.002 0.002 0.003 0.004 0.005 0.006
0.4 0.974 0.759 0.479 0.133 0.001 0.001 0.002 0.003 0.004 0.005 0.006
0.5 0.991 0.826 0.604 0.333 0.077 0.002 0.002 0.003 0.004 0.005 0.006
0.6 0.963 0.877 0.691 0.475 0.24 0.053 0.003 0.003 0.004 0.005 0.006
0.7 0.941 0.918 0.757 0.576 0.378 0.184 0.041 0.003 0.004 0.005 0.006
0.8 0.922 0.951 0.809 0.653 0.484 0.311 0.149 0.033 0.004 0.005 0.006
0.9 0.907 0.978 0.851 0.713 0.567 0.415 0.264 0.125 0.028 0.005 0.006
1 0.894 0.999 0.886 0.763 0.634 0.499 0.364 0.23 0.108 0.025 0.006
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Table 14: Calculated p-value of the GPD Wald-type tests using the telephone fault
data (outliers deleted data)

λ ↓ α→ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.9 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.003 0.003 0.004
−0.8 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.003 0.003 0.004
−0.7 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.003 0.003 0.004
−0.6 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.003 0.003 0.004
−0.5 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.003 0.003 0.004
−0.4 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.003 0.003 0.004
−0.3 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.003 0.003 0.004
−0.2 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.003 0.003 0.004
−0.1 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.003 0.003 0.004

0 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.003 0.003 0.004
0.1 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.003 0.003 0.003 0.004
0.2 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.003 0.003 0.004 0.004
0.3 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.003 0.003 0.004 0.004
0.4 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.003 0.003 0.004 0.004
0.5 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.003 0.003 0.004 0.004
0.6 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.003 0.003 0.004 0.004
0.7 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.003 0.003 0.004 0.004
0.8 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.003 0.003 0.004 0.004
0.9 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.003 0.003 0.004 0.004
1 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.003 0.003 0.004 0.004

Table 15: Darwin’s Plant Fertilization Data

Pair 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Difference −67 −48 6 8 14 16 23 24 28 29 41 49 56 60 75

Table 16: Calculated p-value of the GPD Wald-type tests using Darwin’s plant
fertilization data (full data)

λ ↓ α→ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.9 0.001 0 0 0 0 0 0 0 0 0 0
−0.8 0.002 0 0 0 0 0 0 0 0 0 0
−0.7 0.003 0 0 0 0 0 0 0 0 0 0
−0.6 0.005 0 0 0 0 0 0 0 0 0 0
−0.5 0.007 0.001 0 0 0 0 0 0 0 0 0
−0.4 0.01 0.003 0 0 0 0 0 0 0 0 0
−0.3 0.012 0.004 0 0 0 0 0 0 0 0 0
−0.2 0.015 0.007 0.001 0 0 0 0 0 0 0 0
−0.1 0.017 0.009 0.003 0 0 0 0 0 0 0 0

0 0.020 0.011 0.005 0 0 0 0 0 0 0 0
0.1 0.023 0.014 0.007 0.002 0 0 0 0 0 0 0
0.2 0.025 0.016 0.009 0.003 0 0 0 0 0 0 0
0.3 0.028 0.019 0.011 0.005 0.001 0 0 0 0 0 0
0.4 0.031 0.021 0.014 0.007 0.003 0 0 0 0 0 0
0.5 0.034 0.024 0.016 0.01 0.004 0.001 0 0 0 0 0
0.6 0.037 0.027 0.019 0.012 0.006 0.002 0.001 0 0 0 0
0.7 0.039 0.03 0.022 0.015 0.009 0.004 0.001 0 0 0 0
0.8 0.042 0.032 0.024 0.017 0.011 0.006 0.003 0.001 0 0 0
0.9 0.045 0.035 0.027 0.02 0.014 0.008 0.004 0.002 0.001 0 0
1 0.048 0.038 0.03 0.023 0.017 0.011 0.006 0.003 0.001 0.001 0
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Table 17: Calculated p-value of the GPD Wald-type tests using Darwin’s plant
fertilization data (outliers deleted data)

λ ↓ α→ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.9 0 0 0 0 0 0 0 0 0 0 0
−0.8 0 0 0 0 0 0 0 0 0 0 0
−0.7 0 0 0 0 0 0 0 0 0 0 0
−0.6 0 0 0 0 0 0 0 0 0 0 0
−0.5 0 0 0 0 0 0 0 0 0 0 0
−0.4 0 0 0 0 0 0 0 0 0 0 0
−0.3 0 0 0 0 0 0 0 0 0 0 0
−0.2 0 0 0 0 0 0 0 0 0 0 0
−0.1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0.1 0 0 0 0 0 0 0 0 0 0 0
0.2 0 0 0 0 0 0 0 0 0 0 0
0.3 0 0 0 0 0 0 0 0 0 0 0
0.4 0 0 0 0 0 0 0 0 0 0 0
0.5 0 0 0 0 0 0 0 0 0 0 0
0.6 0 0 0 0 0 0 0 0 0 0 0
0.7 0 0 0 0 0 0 0 0 0 0 0
0.8 0 0 0 0 0 0 0 0 0 0 0
0.9 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
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