

WPS (DEPR): 04/ 2019

RBI WORKING PAPER SERIES

Macroeconomic Forecasting in India:
Does Machine Learning Hold the Key
to Better Forecasts?

Bhanu Pratap
and
Shovon Sengupta

DEPARTMENT OF ECONOMIC AND POLICY RESEARCH
SEPTEMBER 2019

The Reserve Bank of India (RBI) introduced the RBI Working Papers series in
March 2011. These papers present research in progress of the staff members
of RBI and are disseminated to elicit comments and further debate. The views
expressed in these papers are those of authors and not that of RBI.
Comments and observations may please be forwarded to authors. Citation
and use of such papers should take into account its provisional character.

Copyright: Reserve Bank of India 2019

1

Macroeconomic Forecasting in India: Does Machine Learning
Hold the Key to Better Forecasts?

Bhanu Pratap and Shovon Sengupta∗

Abstract

Forecasting of macroeconomic indicators is a challenging task, compounded by
complex processes and dynamic nature of the macroeconomy. With recent
advancements in computing power and the advent of data, machine learning
methods have been explored as an alternative to traditional forecasting methods.
We review the paradigm of machine learning and apply it to forecast inflation for
India. We train various machine learning algorithms and test their forecasting
accuracy against standard statistical methods. Our findings suggest that machine
learning methods are generally able to outperform standard statistical models.
Further, we find that combining forecasts from different competing models improves
forecasting accuracy when compared to individual model forecasts. Also, direct
forecast of headline inflation provides better forecast than the forecast based on
different components of inflation. Lastly, our analysis also finds preliminary
evidence for stochastic seasonality in the inflation series for India.

JEL Classification: C22, C45, C52, E37

Keywords: Time series, forecasting, machine learning, deep learning, inflation

∗ Bhanu Pratap is Manager in the Department of Economic and Policy Research (DEPR), Reserve Bank of India
(RBI), Mumbai; Shovon Sengupta is Senior Lead Data Scientist at Fidelity Management & Research (FMR), India.
The authors would like to thank Mr. Shailesh Goregaokar for his insightful comments as an external discussant on
the paper. Authors are also grateful to Mr. Binod B. Bhoi, Dr. Jai Chander, Mr. Nalin Priyaranjan, and Mr. Ashwin
Kurien for their helpful suggestions. The views expressed in the paper are those of authors and do not necessarily
reflect the views of the institutions to which they belong.
Email: bhanupratap@rbi.org.in; shovon.sengupta@fmr.com.

mailto:bhanupratap@rbi.org.in
mailto:shovon.sengupta@fmr.com

2

Macroeconomic Forecasting in India: Does Machine Learning
Hold the Key to Better Forecasts?

Introduction

Macroeconomic forecasters have traditionally relied upon two different
approaches – structural and non-structural (Diebold, 1998). The structural approach
is guided by economic theory for model specification while the non-structural approach
focuses on exploiting the specific properties of the underlying data without explicitly
relying on any economic theory. Non-structural models attach more importance to
predictive accuracy over causal inference and are useful for short-term unconditional
forecasting. Time-series models, like the univariate autoregressive integrated moving
average (ARIMA) or the multivariate vector autoregression (VAR) models, are usually
the preferred non-structural models (Pescatori and Zaman, 2011). Linearity in
parameters is the key assumption of such time-series models. However, as it was
observed during the 1980s and 1990s, linear models failed to identify macroeconomic
business cycles, periods of extreme volatility and regime changes which led non-linear
models to gain more attention (Sanyal and Roy, 2014).

More recently, machine learning (ML) algorithms have also been proposed in
the literature on forecasting as an alternative to statistical models. With the
advancement in computation and availability of high-frequency data, a considerable
amount of research is focusing on utilising ML methods (especially Neural Network
[NN] models) for time-series predictions, methodological advancements and accuracy
improvements (Makridakis et al., 2018a). While both statistical and ML models aim at
improving prediction accuracy by minimising a loss function, they differ in terms of their
approach to minimise the loss function – the former uses linear processes and the
latter depends on non-linear algorithms. Yet, the much-claimed superiority of ML
models over statistical models cannot be taken as given (Zhang, 2007; Makridakis et
al., 2018a). This is largely an empirical question which needs to be tested carefully
and likely depends on the target indicator, underlying data generating process (DGP),
forecast horizon and data quality. Additionally, new developments are taking place
across sectors with the emergence of ‘Big Data’, so much so that data is called the
new oil (The Economist, 2017). Applications of Big Data and ML-based analytics are
also increasingly being used by central banks. Large central banks have embarked on
establishing their own data analytics teams with the aim to tackle key issues related
to market regulation, supervision, surveillance, risk management and monetary
policymaking (Chakraborty and Joseph, 2017). For central banks, such advancements
call for addition of newer tools to their analytical toolkit – ones which are adept at
handling large volume, high-frequency data.

3

In the Indian context, the Reserve Bank of India (RBI) formally adopted a
flexible inflation targeting (FIT) regime in 2016. Given the forward-looking nature of
monetary policy, forecasts of inflation play an important role in policy formulation. In
this paper, we review various state-of-the-art ML algorithms with the aim to familiarise
the readers with this alternative approach to predictive modelling. We select consumer
price index (CPI) inflation and three of its components as target variables for our
forecasting exercise. CPI-based inflation is chosen because it is a target for monetary
policy, published regularly with a high frequency, and is subject to relatively fewer
revisions. After introducing various statistical and ML models, we use them to generate
forecasts for all four series of inflation and compare these forecasts with those from
our benchmark model. Resultant out-of-sample forecasts are compared using
standard measures of forecast accuracy. Additionally, we analyse two related issues
in the context of forecasting inflation – first, combination of forecasts from different
competing models; second, comparative approaches of directly forecasting headline
inflation versus forecasting each component and combining them to generate a final
forecast for headline inflation.

The key findings of our paper are as follows. First, ML methods generally
outperformed standard statistical methods over the out-of-sample forecast period.
Second, simple average-based forecast combination outperformed complex weighted
average combination of forecasts. Such forecast combination also provided better
forecasting accuracy over individual methods in almost all cases. Third, directly
forecasting headline inflation resulted in large accuracy gains over the approach of
individually forecasting and combining inflation components, for any given forecasting
method. In fact, forecasts based on a combination of best performing methods for each
component also did not perform better than direct forecasts. To our knowledge, very
few studies have explored the application of ML techniques to model or forecast
inflation in India (Malhotra and Maloo, 2017; Pradhan, 2011; Rani et al., 2017). We
also highlight several key features of the ML approach which may result in accuracy
gains when adopted for modelling and forecasting using econometric techniques.

The rest of the paper is organised as follows. Section II highlights evidence on
the performance of ML-based forecasting methods in predicting macroeconomic and
financial time-series indicators. We also discuss the findings from various rounds of
the Makridakis Competitions, an international series of large-scale forecasting
competitions being organised since 1982. In Section III, we briefly review the various
statistical and ML models used in the paper, in addition to discussing the data,
modelling and evaluation strategy. Results from the forecasting exercise are
presented in Section IV. We conclude with a summary of findings and chart out the
scope for future research in Section V.

4

II. Machine Learning, Makridakis Competitions and Empirical Evidence

II.1. Machine learning as a forecasting approach

The traditional econometric methods of forecasting focus on parameter
estimation, i.e. to produce good coefficient estimates (�̂�𝛽) that explain the underlying
relationship between two variables, say 𝑦𝑦 and 𝑥𝑥. These methods face a variety of
challenges which include but are not limited to model selection, variable selection and
uncertainty regarding their forecasts. Other issues related to macroeconomic data
such as serial correlation, heteroskedasticity and multicollinearity compound their
problems. In such a scenario, forecasters usually rely upon economic theory and
intuition, their own judgement and standard statistical approaches to overcome such
challenges.

ML methods provide an alternative approach to forecasting by aiming to directly
produce predictions of 𝑦𝑦 from 𝑥𝑥, by fitting complex yet flexible functional forms on the
data. Thus, the focus of the ML approach to forecasting shifts to producing better out-
of-sample predictions (𝑦𝑦�) directly. A broad introduction of ML is provided by Varian
(2014) and Mullainathan and Spiess (2017). Underlining the strong ability of ML to
make quality predictions, they list down several straight-forward applications of ML in
economics. Mullainathan and Spiess conclude that ML deserves its ‘own place in the
econometric toolbox’.

A logical starting point for the ML approach to forecasting would be to
understand model complexity and the trade-off between bias and variance – the two
main sources of forecast error. Errors due to inappropriate assumptions about the data
are attributed to bias, while variance of a model describes errors due to a model’s
sensitivity to changes in the data. Both bias and variance are dependent on model
complexity in such a manner that there exists a trade-off between the two. A model
with low bias, high variance will fit a complex model on the data but will tend to
generate poor forecasts due to overfitting. A model with high bias, low variance will fit
a simple model on the data but will tend to generate poor forecasts due to underfitting.
The trade-off between bias and variance and its relationship with model complexity is
shown in Chart 1. The ML approach to forecasting aims to find an optimum balance
between bias and variance of a model to simultaneously achieve low bias and low
variance.

In general, any application of ML algorithms would begin with a specification of
the task at hand, for example, the prediction of 𝑦𝑦 given a predictor 𝑥𝑥. The next step is
to train (estimate) a model with the objective to minimise a loss function (e.g. mean
squared error or MSE) using a subsample of the data containing both 𝑦𝑦 (label) and 𝑥𝑥
(feature) called the ‘training set’. The training involves several iterations using the

5

training set to ‘learn’ from the data. Once the model is trained, it is tested on the ‘test
set’, a subsample of data that was not shown to the model earlier. Upon evaluation
against the test set, the model is further fine-tuned through ‘tuning’ or adjusting various
components of the model such as hyperparameters1, the number of times the model
is trained on the training data, initial weights, data transformation and so on. Finally,
the predictions are obtained using the final model selected.

Chart 1: Bias-Variance Trade-off (Left) and Model Complexity (Right)

II.2. Makridakis Competition and Empirical Evidence on ML-based Forecasting

The Makridakis Competitions (or M-Competitions) are a series of open
competitions intended to evaluate and compare the accuracy of different forecasting
methods. Such large-scale open competitions, which include participation from
academicians and industry practitioners alike, have proved to be a fertile ground for
testing out various empirical questions related to forecasting. The first round of the M-
competition was organised in 1982 and the latest M4-Competition concluded in May
2018. In the first round, 15 models were used to forecast data on 1001 time series.
The scale has been increased to include all major statistical and ML models (including
Neural Networks) to model and forecast 100,000 time-series variables. These
competitions provide some interesting findings. As discussed by Makridakis and Hibon
(2000), statistically sophisticated or complex models do not necessarily produce more
accurate forecasts than simpler models. Further, the accuracy of the combination of
various methods, on average, outperforms any individual method. However, the
performance of various methods varies according to the accuracy measure being used
and the length of the forecasting horizon. The recently concluded M4 round also found

1 A model hyperparameter is an external variable to the model and its value cannot be estimated from data. It
controls the estimation process but needs to be specified a priori so that the model can generate reliable forecasts.
This must be distinguished from a model parameter – a variable that is internal to the model and whose value can
be estimated from the data. For instance, in an ARIMA model, the lag orders p or q are hyperparameters1 to the
model, whereas the coefficient values of p lagged and q moving average terms are model parameters.

6

that ‘hybrid’ approaches that utilised both statistical and ML features produced the
most accurate forecasts and the most precise prediction intervals (Makridakis et al.,
2018b). Interestingly, pure ML models did not perform well in comparison to the
benchmark combination method used by the evaluators in this round. The major
findings from these empirical ‘experiments’ are well-documented, discussed and
published, informing practitioners about the latest developments in the field of
forecasting.

In conjunction with the results from the M-competitions, empirical literature
(including that at central banks’ research departments) is increasingly focusing on the
application of ML models for forecasting macroeconomic, financial and business cycle
indicators. This class of models has also found application in business cycle recession
and financial crises forecasting. McAdam and McNelis (2005) at the European Central
Bank use ‘thick’ NN models to forecast inflation based on Phillips-curve formulations
in the United States (US), Japan and the euro area. Such models, representing
trimmed mean forecasts from several individual NN models, outperform linear models
for many countries. Nakamura (2005) also finds that simple NN models outperform
autoregressive time-series models at a short horizon of one to two quarters. Using the
same data as the M3-competition, Ahmed et al. (2010) also find similar results on
superior performance of non-linear ML models. Cook and Hall (2017) explore ‘deep
learning’ based NN models to predict the civilian unemployment rate in the US. Each
of the four types of NN models are not only able to beat benchmark forecasts for a
shorter forecast horizon, but are also able to predict the turning points in the data better
than the benchmark model. The other class of ML models, like the Random Forest
(RF), also outperform linear models in the case of US inflation (Medeiros et al., 2019;
Ülke et al., 2018). In a developing country setup, such as Brazil, high-dimensional
econometric, ML models and their combinations outperform others (Garcia et al.,
2017). In the context of India, Pradhan (2011) applies NN models to forecast inflation,
economic growth and money supply during the period 1994–2009. For a similar time
period, Rani et al. (2017) find that NN models outperform benchmark multivariate
econometric model for predicting inflation. On the other hand, Malhotra and Maloo
(2017) focus on modelling food inflation and its determinants but make no attempt to
forecast headline inflation. Given the limited number of such studies in India, there is
ample ground for studying the application of ML-based forecasting techniques on
Indian data.

7

III. Data, Modelling and Evaluation Strategy

This section gives an overview of the statistical and ML methods used in our
forecasting exercise. Along with the models, we also discuss our target variable
(inflation) and some of its nuances. Further, we describe the overall approach adopted
in this paper, including our model estimation, parameter/hyperparameter tuning and
model evaluation strategy for the suite of models described in the previous section.

III.1. Suite of Models

In the class of statistical models, we consider the Random Walk (RW),
autoregressive integrated moving average (ARIMA), seasonal ARIMA (SARIMA) and
the STL-Decomposition2 methods. The RW model assumes that the best possible
forecast of a variable is its last observed value. It is often used as a benchmark model
for forecast evaluation and, therefore, the RW model is adopted as a benchmark
model for our exercise. The ARIMA model is one of the most popular univariate time-
series forecasting models which combines autoregressive and moving average
models. However, a problem with the ARIMA model is that it does not support
seasonal data. Thus, we also test the SARIMA model which is a generalised form of
the ARIMA method that explicitly models the seasonal component in a time series
apart from its mean component. Lastly, the STL method forecasts a time series by
decomposing it into its trend, seasonal and remainder components.

Among the ML class of models, we use algorithms suitable for supervised
learning where a target variable y is given. In contrast, unsupervised learning
algorithms are used in cases when the target variable y is absent in the data. We
evaluate three broad types of supervised learning algorithms. The first type of
algorithms is based on a decision tree. In its ML application, a decision tree (also called
a regression tree) is a non-parametric model that relies on recursive binary partitioning
of the covariate space. Decision trees, however, are prone to the problem of
overfitting. To overcome this, many solutions have been proposed which are usually
based on bagging3 and boosting4 principles. The Random Forest (RF) algorithm
based on the former and Extreme Gradient Boosting (XGBoost) based on the latter
principle are included in our exercise.

The second type of algorithms are based on Artificial Neural Networks (ANN),
which allows complex non-linear relationships between the input and output variables.
The most basic model has three distinct set of layers – one, an input layer representing

2 STL is an acronym for Seasonal and Trend Decomposition with Loess.
3 Averaging predictions across models estimated with several different bootstrap samples is called ‘bagging’ and
is used in order to improve the performance of an estimator.
4 In the ‘boosting’ method, decision trees are built sequentially (rather than simultaneously) such that each
subsequent tree aims to reduce the errors of the previous tree.

8

inputs of the model; second, a hidden layer representing a set of functional nodes;
and, third, an output layer representing the output of the model. The number of layers
and the number of nodes must be determined in advance, whereas the model
parameters (weights) are learnt from data. Such an arrangement of layers gives way
to powerful modelling architectures5 suitable for forecasting. Traditional ANNs,
however, assume that all inputs to the neural network are independent of each other.
This assumption breaks down in the case of sequential data. The Recurrent Neural
Network (RNN) models (Rumelhart et al., 1988) developed during the application of
neural networks to language parsing, speech recognition and translation are suitable
when the data has a sequential structure. The RNNs are thus found to be extremely
suitable for modelling time-series data. We consider one ANN and two RNN-based
models. The Neural Network Autoregression (NNAR) model, based on the traditional
ANN architecture, uses the lagged values of the time series as an input to the neural
network. On the other hand, the RNN-based Long Short-term Memory (RNN-LSTM)
model and the Gated Recurrent Unit (GRU) model treat input data in a sequential
manner.

Lastly, the third set consists of algorithms originally developed for handling
classification tasks (where dependent variable takes a binary value). Since then, they
have also been adopted for use in regression tasks (where the dependent variable is
continuous). We evaluate two such algorithms, namely the k-Nearest Neighbour
(KNN) and the support vector machines (SVM) algorithm. In the KNN method, an
observation is modelled as its k nearest observations in the feature space. Similarly,
in situations when the data is not linearly separable, the SVM algorithm projects the
data into other dimension and seeks to find the best line (hyperplane) to linearly
separate the data belonging to separate classes. A detailed explanation of all models
is presented in Appendix II of this paper.

III.2. Target Data

The target variable for our forecasting exercise is inflation, described as the
year-on-year growth rate in the CPI. More specifically, we use the all-India CPI-
combined with base year of 2012, released by the Central Statistical Office (CSO) of
the Ministry of Statistics and Programme Implementation (MoSPI), Government of
India. This measure of inflation is generally referred to as headline inflation. The new
series is available from January 2011 onwards. To extend our series backwards, we
rely on a back-casted CPI-combined6 series. In addition to the CPI-headline inflation,
we use three components of CPI, namely the CPI-food and beverages (weight of 45.86

5 Architectures refer, generally, to the configuration of nodes in a model, the interconnections among those nodes,
and the nature of the operations performed at each node.
6 Back-casted using CPI-Industrial Workers; released with the Report of the Expert Committee to Revise and
Strengthen the Monetary Policy Framework (RBI, 2014).

9

in CPI); CPI-fuel and light (weight of 6.84 in CPI); and, CPI-excluding food and fuel
(weight of 47.3 in CPI) to construct measures for food, fuel and core inflation
respectively. Data for these food, fuel and core inflation are also available from
January 2012 onwards; however, no back-casted series is readily available for them.

III.3. Data Pre-checks

Appropriate specification of models – whether statistical or ML – poses many
challenges. Standard practice while working with time-series data usually involves
testing for unit root in the data and identifying the order of the autoregressive (AR) and
moving average (MA) terms. If required, the data are also seasonally adjusted. The
summary statistics for our data series are presented in Table 1. High standard
deviation of headline inflation suggests that inflation in India is highly volatile and,
therefore, less persistent, mainly because of high volatility in CPI-food series. Core
inflation, on the other hand, is the least volatile (more persistent) but highly positively
skewed. The subsample mean of the headline series is closely aligned to its
components, although the full sample mean is a notch higher owing to high inflationary
episodes during 2008–10. To test for stationarity, we use the Augmented Dickey–
Fuller (ADF) Test and the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) Test. Both
tests suggest that all the four data series were non-stationary during the sample period
(results in Table A1.1 of Appendix 1).

Table 1: Summary Statistics

Indicator CPI-Headline CPI-Food &
Beverages

CPI-Fuel
& Light

CPI-exc.
Food & Fuel

Sample Period 2002–18 2012–18 2012–18 2012–18 2012–18
Mean 6.535 6.157 6.209 6.367 6.106
Median 5.620 5.316 5.780 5.795 5.235
Maximum 13.388 11.505 16.650 11.910 10.320
Minimum 1.460 1.460 -1.690 2.490 3.830
Std. Dev. 2.729 2.634 4.211 2.472 1.785
Skewness 0.408 0.373 0.256 0.413 0.792
Kurtosis 2.031 1.855 2.275 2.270 2.394
Observations 204 84 84 84 84
Jarque–Bera 13.633 6.536 2.758 4.254 10.067
Probability 0.001 0.038 0.252 0.119 0.007

Chart 2 shows clear shifts in mean inflation over time (it rises till 2010 and then
falls). The recent disinflation phase, however, does not show any shift in mean but
depicts a moderation in trend inflation (Chart 3).

10

Chart 2: CPI-Headline Inflation - 2002M01 to 2018M012

Chart 3: Inflation for CPI Headline and Components - 2012M01 to 2018M012

Seasonality in time-series data can manifest in three forms: deterministic,
residual, and stochastic. Inflation calculated as the year-on-year (YoY) growth rate of
CPI is generally assumed to contain no seasonality but the seasonal adjustment
methods7 only control for ‘deterministic seasonality’ in the data. Interestingly, we do
find evidence for the presence of seasonality in all four inflation series. We plot both
ACF and PACF for headline inflation over longer lag orders and note the significant
spikes in PACF at lag orders 12-13, 24-25 and 36-37 pointing towards serial
correlation at seasonal frequencies (Chart 4). A plot of cross-correlation between
various lags of headline inflation suggests strong serial correlation with seasonal lags.
A similar pattern is observed for food, fuel and core inflation series but it is the weakest
for fuel inflation. This could, inter alia, be due to ‘residual seasonality’ or the tendency
of time series to display a predictable seasonal pattern despite being seasonally
adjusted. Such issues have been observed in the case of US GDP growth (Owyang

7 X-11, X-12, X-13 TRAMO/SEATS are other popular statistical methods for seasonal adjustment.

0

2

4

6

8

10

12

14
Ja

n-
02

Ju
n-

02
N

ov
-0

2
Ap

r-0
3

Se
p-

03
Fe

b-
04

Ju
l-0

4
D

ec
-0

4
M

ay
-0

5
O

ct
-0

5
M

ar
-0

6
Au

g-
06

Ja
n-

07
Ju

n-
07

N
ov

-0
7

Ap
r-0

8
Se

p-
08

Fe
b-

09
Ju

l-0
9

D
ec

-0
9

M
ay

-1
0

O
ct

-1
0

M
ar

-1
1

Au
g-

11
Ja

n-
12

Ju
n-

12
N

ov
-1

2
Ap

r-1
3

Se
p-

13
Fe

b-
14

Ju
l-1

4
D

ec
-1

4
M

ay
-1

5
O

ct
-1

5
M

ar
-1

6
Au

g-
16

Ja
n-

17
Ju

n-
17

N
ov

-1
7

Ap
r-1

8
Se

p-
18

Pe
r c

en
t

-2
0
2
4
6
8

10
12
14
16
18

Ja
n-

12
M

ar
-1

2
M

ay
-1

2
Ju

l-1
2

Se
p-

12
N

ov
-1

2
Ja

n-
13

M
ar

-1
3

M
ay

-1
3

Ju
l-1

3
Se

p-
13

N
ov

-1
3

Ja
n-

14
M

ar
-1

4
M

ay
-1

4
Ju

l-1
4

Se
p-

14
N

ov
-1

4
Ja

n-
15

M
ar

-1
5

M
ay

-1
5

Ju
l-1

5
Se

p-
15

N
ov

-1
5

Ja
n-

16
M

ar
-1

6
M

ay
-1

6
Ju

l-1
6

Se
p-

16
N

ov
-1

6
Ja

n-
17

M
ar

-1
7

M
ay

-1
7

Ju
l-1

7
Se

p-
17

N
ov

-1
7

Ja
n-

18
M

ar
-1

8
M

ay
-1

8
Ju

l-1
8

Se
p-

18
N

ov
-1

8

Pe
r c

en
t

CPI - Food & Beverages
CPI - Fuel & Light
CPI - exc. Food & Fuel
CPI - Headline

Pre-2008 - 4.9%

2008-2014: 9.7%

2014-2018: 4.8%

11

and Shell, 2018) as well as US core consumer price inflation (Peneva and Sadee,
2019). The presence of serial correlation at seasonal frequencies could also be due
to ‘stochastic seasonality’ or the presence of seasonal unit roots in the data. When
tested for the presence of a seasonal unit root, the evidence was mixed. The Canova–
Hansen Test did not find the presence of seasonal unit root, whereas the HEGY Test
indicated the presence of seasonal unit roots (Table A1.2, Appendix 1) in the headline
(subsample), food, fuel and core inflation. These test results are robust to seasonal
adjustment of the underlying CPI series prior to calculation of YoY change. Therefore,
we included the generalised SARIMA model in our forecasting exercise. Further, this
information on the dynamics of inflation data is also crucial to make an appropriate
choice of input variables for ML methods. To capture such dynamics of the data, we
use autoregressive lags of the data (up to lag order 24) as input variables in the case
of ML methods.

Chart 4: CPI-Headline Inflation: ACF, PACF and Cross-correlation Matrix

(i) Autocorrelation Function (ACF) Plot

(iii) Cross-correlation matrix

(ii) Partial Autocorrelation Function (PACF) Plot

III.4. Estimation/Training Procedure

Following the practice in the ML approach of prediction, we divide our sample
into two parts: training and test sample. The choice of the train-test split is critical for
generating reliable forecasts. The training dataset should be adequate for the model
to ‘learn’ from the data and at the same time avoid overfitting. Thus, for each series,
we treat the last six months of data as our test sample (Table 2)

12

Table 2: Train-Test sample for CPI-Headline and Components

Series Full Sample Train Test
CPI Headline Inflation 2002M01 - 2018M12 2002M01 - 2018M06 2018M07 - 2018M12
CPI Food Inflation 2012M01 - 2018M12 2012M01 - 2018M06 2018M07 - 2018M12
CPI Fuel Inflation 2012M01 - 2018M12 2012M01 - 2018M06 2018M07 - 2018M12
CPI exc. Food & Fuel
Inflation 2012M01 - 2018M12 2012M01 - 2018M06 2018M07 - 2018M12

For deep learning models, input series are transformed (using natural log

transformation) and scaled (standard min-max scaling) before they are fed into the
model with a view to control the variance of the series. Typically, deep learning models
are often used without differencing the series. For non-stationary time series,
differencing is one of the most popular approaches. One important aspect of
differencing is that while differencing for linear models is a well-suited operation based
on formal tests, this is not the case for non-linear models, where the decision for
differencing is ad hoc.

All models are ‘trained’ or estimated on the training data. An additional
consideration during training is related to finding the optimum values of parameters
and hyperparameters for each of these models. In ML, the problem of finding the
optimum set of hyperparameters for a learning algorithm is called tuning. For all
models in our analysis, we use the grid-search method for hyperparameter tuning.
Briefly, the grid-search method involves an exhaustive search for optimum values
through a manually specified subset space which may include real and/or unbounded
values. A grid-search method must be guided by a performance metric, which in our
case is Akaike Information Criteria (AIC) for statistical methods and Mean Squared
Error (MSE) in the case of ML algorithms. In addition, for each model, we also perform
robustness checks and ensure that residuals from the final selected model in each
case follow the assumptions of a white noise process (see Chart A1.1 in Appendix 1).

III.5. Model Evaluation

In order to evaluate the forecasting performance of each model, we rely on the
following measures of prediction accuracy, namely Root Mean Square Error (RMSE),
relative RMSE and Symmetric Mean Absolute Percentage Error (SMAPE). For
headline and subseries inflation, model forecasts are compared for a six-month
horizon.

(i) 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑀𝑀 𝐸𝐸𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆 (𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸) = �1
𝑡𝑡
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑡𝑡
𝑖𝑖=1 ;

13

(ii) 𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀 𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑜𝑜𝑜𝑜 𝑅𝑅𝑜𝑜𝑀𝑀𝑀𝑀𝑀𝑀 𝑖𝑖
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑜𝑜𝑜𝑜 𝑅𝑅𝑅𝑅 𝑅𝑅𝑜𝑜𝑀𝑀𝑀𝑀𝑀𝑀

 ;

(iii) 𝑆𝑆𝑦𝑦𝑆𝑆𝑆𝑆𝑀𝑀𝑅𝑅𝑆𝑆𝑅𝑅𝑆𝑆 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅𝑀𝑀 𝑃𝑃𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑅𝑅𝑀𝑀𝑃𝑃𝑀𝑀 𝐸𝐸𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆 (𝑆𝑆𝑀𝑀𝐴𝐴𝑃𝑃𝐸𝐸) = 100
𝑛𝑛
∑ |𝑦𝑦�𝑖𝑖− 𝑦𝑦𝑖𝑖|

(|𝑦𝑦𝑖𝑖|+ |𝑦𝑦�𝑖𝑖|)/2
𝑛𝑛
𝑖𝑖=1

IV. Results and Discussion

As mentioned earlier, the RW model served as a benchmark for our forecasting
exercise. The forecast accuracy of each model over a six-month forecast horizon is
presented in Tables 3 to 6. We select top five best performing models for each inflation
series based on their SMAPE and present them alongside the actual inflation and RW
forecasts. Point forecasts from all models have been provided in Appendix 1.

IV.1. Forecasts for Headline, Food, Fuel and Core Inflation

We begin our discussion with the forecasts for headline inflation (Table 3). All
models barring STL are able to outperform the benchmark RW model. The best
forecasting performance is achieved by the SARIMA model of the form (3,1,1)(2,1,1).
It is followed by NNAR(15,1,15), deep-learning models (RNN-LSTM and GRU) and
XGBoost in terms of forecast accuracy, all able to closely follow the actual inflation
path (Chart 5). The parameters, in particular seasonal parameters, of the SARIMA and
NNAR model underline important aspects of the DGP discussed in the previous
section. Since these models are based on grid-search and minimisation of relevant
performance metric, the selection of seasonal AR/MA lags as well as seasonal
differencing of order 1 suggests the presence of additional information in the seasonal
part of the data. Potential gain in forecast accuracy can be achieved by explicitly
including this information in the model. Additionally, all ML models were also able to
outperform the ARIMA model by a comfortable margin.

Table 3: Model Accuracy: CPI Headline Inflation (Aggregate)

Model RMSE Relative RMSE SMAPE
RW Benchmark 1.81 1.00 42.69
ARIMA 1.62 0.89 39.05
SARIMA 0.24 0.13 6.88
STL 1.94 1.07 44.75
NNAR 0.41 0.22 12.20
RNN LSTM 0.65 0.36 16.99
GRU 0.63 0.35 16.77
RF 0.67 0.37 18.60
SVM 0.74 0.41 20.09
KNN 0.72 0.40 17.80
XGBoost 0.62 0.34 16.90

14

Chart 5: CPI Headline Inflation: Top Five Model Forecasts

In the case of food inflation, the SARIMA model again emerges as the best
performing model, closely followed by the NNAR model (Table 4). The best model
SARIMA(2,1,2)(2,1,1), followed by NNAR(15,1,12), were able to accurately forecast
the disinflation and subsequent deflation in food that was seen during the later part of
2018 (Chart 6). RF and XGBoost, which are based on decision-trees, and the KNN
model were also close and picked up the food disinflation. The RF, XGBoost and the
KNN regression rely on rules based on ‘similarity’ of input data. The strong
performance of these models suggests reoccurring patterns in the data that may not
be captured in models relying on only very recent observations, such as the ARIMA
model. Since these models are adept at handling highly correlated input data, these
may be appropriate methods to forecast CPI-food inflation in view of the availability of
relevant data such as arrival quantities, wholesale prices and weather indicators.

Table 4: Model Accuracy: CPI-Food & Beverages Inflation

Model RMSE Relative RMSE SMAPE
RW Benchmark 3.41 1.00 146.94
ARIMA 3.29 0.96 142.01
SARIMA 0.46 0.13 65.50
STL 3.75 1.10 150.51
NNAR 1.47 0.43 117.09
RNN LSTM 1.72 0.50 132.03
GRU 4.16 1.22 159.67
RF 1.38 0.40 124.87
SVM 4.71 1.38 159.68
KNN 1.31 0.38 123.20
XGBoost 1.33 0.39 125.85

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Jan-18 Feb-18 Mar-18 Apr-18 May-18 Jun-18 Jul-18 Aug-18 Sep-18 Oct-18 Nov-18 Dec-18

Pe
r c

en
t

Actual SARIMA NNAR RNN LSTM
GRU XGBoost RW Benchmark

15

Chart 6: CPI Food and Beverages Inflation: Top Five Model Forecasts

Table 5 provides information on forecast performance for fuel inflation, which
depicts a mixed picture. Many ML models, though not all, were able to outperform the
benchmark RW forecast and ARIMA forecast. Overall, the forecasts from XGBoost
are found to be most precise. NNAR(10,1,7) and RNN-LSTM provided the next best
performance in terms of the observed SMAPE. Interestingly, the NNAR model was
able to predict the fall in fuel inflation much ahead of other models (Chart 7). In contrast
to the headline and food inflation, the SARIMA model in the case of fuel inflation does
not rank in the top five models. Recall that the ACF/PACF plots for fuel inflation did
not indicate any significant spikes at seasonal frequencies, but the HEGY Test did
indicate the presence of seasonal unit root.

Table 5: Model Accuracy: CPI-Fuel and Light Inflation

Model RMSE Relative RMSE SMAPE
RW Benchmark 1.48 1.00 19.14
ARIMA 1.45 0.98 16.09
SARIMA 1.32 0.89 18.05
STL 1.74 1.17 21.53
NNAR 1.30 0.88 13.86
RNN LSTM 1.20 0.81 13.94
GRU 2.11 1.42 29.66
RF 1.37 0.92 17.01
SVM 2.04 1.37 28.32
KNN 1.82 1.22 23.37
XGBoost 1.08 0.73 13.20

-2

-1

0

1

2

3

4

5

Jan-18 Feb-18 Mar-18 Apr-18 May-18 Jun-18 Jul-18 Aug-18 Sep-18 Oct-18 Nov-18 Dec-18

Pe
r c

en
t

Actual SARIMA NNAR RF
kNN XGBoost RW Benchmark

16

Chart 7: CPI Fuel and Light Inflation: Top Five Model Forecasts

Lastly, in the case of core inflation (or CPI-exc. food and fuel), RW forecasts
are quite precise compared to many other statistical/ML methods. It may suggest a
complex DGP underlying the data which these models were unable to learn given the
short sample. It could also be due to high persistence in core inflation which is captured
better by the benchmark RW model. Nevertheless, the SARIMA method was able to
generate the best forecasts, yet again underlining its consistency (Chart 8). The
chosen SARIMA model is of the form SARIMA (1,1,1)(0,0,1).

Table 6: Model Accuracy: CPI-exc. Food and Fuel Inflation

Model RMSE Relative RMSE SMAPE
RW Benchmark 0.40 1.00 5.81
ARIMA 0.58 1.44 8.58
SARIMA 0.20 0.51 3.26
STL 0.57 1.43 8.33
NNAR 1.20 3.01 17.67
RNN LSTM 0.33 0.82 3.70
GRU 0.35 0.88 4.27
RF 0.34 0.85 5.13
SVM 0.44 1.11 6.97
KNN 0.55 1.37 6.98
XGBoost 0.40 1.01 5.13

Chart 8: CPI Excluding Food and Fuel: Top Five Model Forecasts

4

5

6

7

8

9

Jan-18 Feb-18 Mar-18 Apr-18 May-18 Jun-18 Jul-18 Aug-18 Sep-18 Oct-18 Nov-18 Dec-18

Pe
r c

en
t

Actual ARIMA NNAR
RNN LSTM RF XGBoost

5.0

5.3

5.6

5.9

6.2

6.5

Jan-18 Feb-18 Mar-18 Apr-18 May-18 Jun-18 Jul-18 Aug-18 Sep-18 Oct-18 Nov-18 Dec-18

Pe
r c

en
t

Actual SARIMA RNN LSTM
GRU RF XGBoost

17

As seen above, the models which incorporate long-term information over the
training period provide superior forecasting performance. In the case of ML methods,
this is achieved through selection of input variables (autoregressive lags of large order)
as well as by construction in the case of deep learning methods. This is also true for
the general SARIMA method. The superior forecast performance of such models,
especially NNAR and SARIMA, also reflects the presence of the seasonality element
in the inflation series. Deterministic seasonality usually denotes constant seasonal
means. On the other hand, unit root seasonality captured by the SARIMA model
represents seasonal means which evolve over time. Intuitively, this may signify that
seasonal patterns repeat themselves but only roughly, as they may be expected to
undergo change as the economy evolves. As the inflationary process in India has
undergone a structural change during our training period (adoption of the flexible
inflation targeting framework and falling fuel and more recently food prices), it could
be one of the sources for this time -varying seasonality.

Similarly, the forecasting exercise on core inflation also throws some important
questions. Compared to the headline inflation forecast, the models with respect to the
core inflation appear to feature all the typical improvements one would expect from
this core series given its high degree of persistence. Despite this, the SARIMA model
was found to forecast this component better. This leads to the following question: Is
stochastic seasonality such an endemic feature of the inflationary process that it even
influences the core inflation? We repeated the same exercise on core inflation after
the seasonal adjustment of the underlying CPI series and found that the SARIMA
method still outperformed other methods. This suggests the criticality of implied time-
varying seasonality for forecasting exercises.

We now turn our attention to some more issues related to inflation forecasting
and attempt to provide empirical evidence to this effect. The first of these relates to
the performance of forecast combinations. The second question pertains to the
approach of directly forecasting headline inflation compared to separately forecasting
its components (food, fuel and core) and combine them to arrive at a final forecast for
headline inflation.

IV.2. Forecast Combinations

Combining the forecasts from different ‘competing’ forecasting models is not a
new theme in the literature. Bates and Granger (1969), a seminal work in the area of
forecast combination, concluded that combining forecasts often leads to better
forecasts. A forecast combination is motivated by the fact that any forecast model is
at best only an approximation of the true data generating process (DGP), thus more
than one model with similar predictive accuracy can be estimated for the same target
variable. Forecasts are also state-dependent making them prone to errors related to

18

misspecification, structural breaks and uncertainty related to wider economic changes.
In this case, any one model can never be expected to always perform well at all times.
Empirically, combination forecasts are argued to work well providing stable
performance over time, acting as insurance against model instability (Elliot and
Timmerman, 2005).

Since Bates and Granger (1969), many other approaches have been suggested
in the literature for optimum combination of forecasts. These approaches treat forecast
combination as a model selection and constrained parameter estimation problem,
suggesting the use of least squares, shrinkage and Bayesian approaches to forecast
combination. In fact, many ML models have such techniques inbuilt via bootstrapping,
bagging and boosting methods. Some empirical studies have also found that instead
of complicated weighing schemes that rely on estimated combination weights, simple
equal weighted forecast combination perform well comparatively (Smith and Wallis,
2009). Superior performance of forecast combinations compared to individual models
is also one of the results established in the M-competitions. Using our inflation
forecasts, we constructed simple forecast combinations based on equal weights given
to each model. As an alternative to this simple weighing scheme, we also combined
forecasts based on inverse RMSE weights. The accuracy measures for forecast
combination based on top five models for each series are given in Table 7.

Table 7: Inflation Forecast Combinations

Series Combination Models Weights RMSE SMAPE

CPI-headline SARIMA, NNAR, RNN-LSTM,
GRU, XGBoost

equal 0.38 10.7
Inverse RMSE 0.51 13.89

CPI-food SARIMA, NNAR, RF, KNN,
XGBoost

equal 0.94 100.2
Inverse RMSE 1.26 121.3

CPI-fuel ARIMA, NNAR, RNN-LSTM, RF,
XGBoost

equal 0.83 10.4
Inverse RMSE 1.00 12.4

CPI-exc. food
& fuel

SARIMA, RNN-LSTM, GRU, RF,
XGBoost

equal 0.20 2.7
Inverse RMSE 0.25 3.5

It is evident that the simple average forecast combination outperformed all

individual models except in the case headline and food, where it is outperformed by
the individual SARIMA model. We also computed simple average forecast
combinations using various subsets of the top five models, each pointing towards
similar results. The inverse RMSE weighted8 forecast combination was not found to
perform better than the simple weighing scheme. However, the accuracy gains from
forecast combination are visible in terms of overall reduction in RMSE/SMAPE. Given
the difficulty in deciding on a single best model, simple average forecast combinations
may be considered as a preferred method. Penalising models based on their past

8 RMSE over the test dataset.

19

performance, such as using weights based on past performance, may result in a loss
in forecast accuracy.

IV.3. Aggregate vs. Disaggregate Inflation Forecasts

The underlying index of CPI-headline is a composite index constructed based
on component indices. Therefore, a forecaster may choose to directly forecast
headline inflation or separately forecast each component index and then aggregate
these forecasts to form the headline forecast. Information from component indices can
improve forecast accuracy provided they follow different DGPs, but it can also
introduce more noise into the data and, therefore, reduce the accuracy. In this context,
Chaudhuri and Bhaduri (2019) find that for Wholesale Price Index (WPI) and its
constituents, the forecasting approach based on component indices outperforms the
approach to directly forecast WPI inflation. We attempt to address the same question
using the data and forecasts of CPI. Using the official weights, we combine the three
components – food, fuel and core – to compute the headline inflation forecast for each
type of model with the aim to assess the accuracy gains from the ‘disaggregate’
approach relative to the ‘aggregate’ approach for any given model.

A comparison of RMSE/SMAPE for any given model indicates that the
approach to directly forecasting headline inflation provides better accuracy than the
alternative approach (Table 8). In addition, we also construct a forecast for headline
inflation based on best performing model for respective component, namely SARIMA
for food and core inflation, and XGBoost for fuel inflation (Chart 9). The RMSE and
SMAPE for the resultant forecast is 0.68 and 16.68, respectively. Direct forecasts
obtained from SARIMA, NNAR and even RF methods are better compared to
‘disaggregate’ inflation forecast. Prima facie these results suggest that there are no
apparent gains from forecasting each component individually and then combining
them to compute the headline inflation forecast.

Table 8: Forecast Accuracy: Aggregate versus Disaggregate

Model Aggregate Disaggregate Aggregate Disaggregate
 RMSE RMSE SMAPE SMAPE
RW Forecast 1.69 1.79 40.62 42.51
ARIMA 0.92 0.93 24.24 23.57
SARIMA 0.29 0.64 8.40 17.29
STL 2.00 2.06 45.83 46.78
NNAR 0.20 1.22 5.03 31.21
RNN LSTM 0.75 0.90 16.85 23.79
GRU 1.66 1.81 40.08 44.31
RF 0.67 0.83 15.33 21.95
SVM 0.75 2.29 17.79 52.51
KNN 0.93 0.85 22.00 19.16
XGBoost 0.73 0.83 16.61 22.09

20

Chart 9: Component-wise Forecast for CPI Headline Inflation

V. Conclusion and the Way Forward

The availability of large volume and high-frequency data has allowed
researchers to explore more complex models which can capture this data to improve
forecasting accuracy. The field of machine learning offers a new paradigm with tools
and methods to incorporate this in a policymaker’s forecasting toolkit.

In the context of forecasting inflation for India, we review several ML methods
and apply them to forecast headline inflation and its components. We restrict ourselves
to only univariate time-series space and a short-term forecast horizon of six months.
The main findings of this paper are as follows. First, we find that ML methods,
especially neural networks and tree-based methods, are able to outperform RW and
ARIMA models. Second, in the case of headline and food inflation, the SARIMA
method provides overall best forecasts. In fact, SARIMA and XGBoost methods
constantly rank amongst the best five models in terms of their accuracy scores. The
superior performance of the SARIMA method perhaps points towards the presence of
seasonal unit roots and residual seasonality in the data. Third, simple average-based
forecast combinations generally outperform all individual models. Simple weight
scheme was found to outperform the complex weight method. Notwithstanding the
debate on optimum combination method, these results suggest that forecast
combination is a good practice to achieve better forecasts. Fourth, in comparing the
approaches of directly forecasting headline inflation versus separately forecasting its
components and combining them, no meaningful gains were observed from the latter
approach. Fifth, our analysis also suggests that accuracy gains can be achieved in
economic forecasting by adopting techniques from the ML paradigm such as
algorithm-based hyperparameter tuning and train-test validation strategy.

Before we conclude, some of the caveats of our forecasting exercise, which
may also be generally applicable to ML-based forecasting, need to be mentioned.
First, any good forecast must be accompanied by precise confidence intervals to
explicitly describe the uncertainty about the forecasts. Confidence intervals in case of

1.5

2.5

3.5

4.5

5.5

Jan-18 Feb-18 Mar-18 Apr-18 May-18 Jun-18 Jul-18 Aug-18 Sep-18 Oct-18 Nov-18 Dec-18

Pe
r c

en
t

Actual RW Benchmark NNAR Subseries-wise combined forecast

21

statistical methods are based on a well-defined stochastic model. On the other hand,
generating a confidence interval is not very straightforward in the case of ML methods.
One popular approach to generate confidence intervals around model predicted
values relies on iterative bootstrapped sampling of prediction errors either from a
normal distribution or historical values. Using this approach, we were able to obtain
confidence intervals for the NNAR method; however, a word of caution is needed as
this approach is yet to stabilise before it can be used for policy purposes. Second, the
generation of out-of-sample forecasts may be sensitive to the sample selection for
training/testing of the model. It may, therefore, be appropriate to generate similar
forecasts for a different train-test data using rolling or recursive forecasting methods.
Third, the forecasting accuracy of ML methods must also be ascertained for different
forecast horizons of short (1-3 periods ahead), medium (4-12 periods ahead) and long
(more than 12 periods ahead) term. Fourth, ML methods are often termed a ‘black
box’ which does not provide any information on how the forecasts are generated.
However, methods to derive inference and causal interpretation are an active area of
research today, lying at the intersection of computer science and statistics. Nascent
literature on using ‘Shapley value’ regression – a concept from game theory to derive
statistical inference from ML methods – is gradually emerging (Joseph, 2019). Model
agnostic methods, such as Shapley Additive Explanations (SHAP) and Local
Interpretable Model-agnostic Explanation (LIME) are techniques being developed to
understand the modelled relationship between input-output variables globally as well
as locally for each predicted observation or group of observations.

22

Appendix 1: Statistical Tests and Model Forecasts

Table A1.1: Unit Root Tests

Series ADF Test
(null: data is non-stationary)

KPSS Test
(null: data is stationary)

In Levels stat p-value stat p-value
CPI - headline -1.301 0.869 0.850 0.010
CPI - food & beverages -3.118 0.117 1.600 0.010
CPI - fuel & light -2.293 0.456 0.921 0.010
CPI - exc. food & fuel -1.795 0.660 -6.215 0.753
First Difference stat p-value stat p-value
CPI - headline -6.501 0.010 0.141 0.100
CPI - food & beverages -4.483 0.010 0.257 0.100
CPI - fuel & light -5.038 0.010 0.148 0.100
CPI - excl. food & fuel -4.941 0.010 0.277 0.100

Table A1.2: Number of Seasonal Differences Based on Seasonal Unit Root Tests

 Canova-Hansen Test HEGY Test
Series (p < 0.05) (p < 0.05)
CPI - headline 0 0
CPI - headline 0 1
CPI - food & beverages 0 1
CPI - fuel & light 0 1
CPI - exc. food & fuel 0 1

Table A1.3: Model Forecasts: CPI Headline Inflation (Aggregate)

 Jul-18 Aug-18 Sep-18 Oct-18 Nov-18 Dec-18
Actual 4.17 3.69 3.77 3.38 2.33 2.19

Statistical/Decomposition
RW Forecast 4.92 4.92 4.91 4.91 4.91 4.90
ARIMA 4.84 4.77 4.72 4.69 4.67 4.65
SARIMA (R) 4.45 4.03 4.03 3.89 3.29 3.14
SARIMA (Python) 4.25 3.80 3.82 3.51 2.80 2.49
STL 4.99 5.05 4.96 4.96 5.08 5.10

Machine Learning
NNAR (R) 4.35 3.36 3.16 3.26 2.76 2.71
NNAR (Python) 4.77 4.13 3.72 3.79 3.45 2.55
RNN LSTM 4.79 4.16 3.77 3.83 3.52 2.75
GRU 4.90 4.38 3.89 3.67 3.32 2.70
RF 4.81 4.23 3.83 3.90 3.25 3.11
SVM 5.11 4.09 4.04 3.95 2.99 3.37
KNN 5.00 3.91 3.81 3.72 3.63 2.92
XGBoost 4.58 3.91 4.01 3.70 3.27 3.19

23

Table A1.4: Model Forecasts: CPI Food Inflation

 Jul-18 Aug-18 Sep-18 Oct-18 Nov-18 Dec-18
Actual 1.73 0.78 1.01 -0.14 -1.69 -1.49

Statistical/Decomposition
RW Forecast 3.13 3.15 3.17 3.19 3.21 3.23
ARIMA 1.16 0.83 1.77 1.53 0.24 0.13
SARIMA (R) 1.16 0.83 1.70 1.50 0.23 0.12
SARIMA (Python) 1.52 0.71 0.48 0.09 -0.88 -1.03
STL 3.58 3.60 3.23 3.30 3.65 3.80

Machine Learning
NNAR (R) 2.55 1.64 0.92 0.65 0.81 0.74
NNAR (Python) 3.11 2.02 1.31 1.48 0.65 -0.31
RNN LSTM 3.07 2.15 1.56 1.70 1.03 0.24
GRU 4.84 4.31 4.35 4.16 3.55 3.48
RF 3.12 2.03 1.04 1.03 0.32 0.08
SVM 4.71 4.38 4.45 4.76 4.53 4.59
KNN 2.29 1.31 0.54 0.55 0.53 0.53
XGBoost 3.39 1.76 0.84 0.81 0.25 -0.02

Table A1.5: Model Forecasts: CPI Fuel Inflation

 Jul-18 Aug-18 Sep-18 Oct-18 Nov-18 Dec-18
Actual 7.96 8.55 8.63 8.55 7.24 4.54

Statistical/Decomposition
RW Forecast 7.16 7.10 7.04 6.98 6.92 6.86
ARIMA 7.55 7.62 7.64 7.65 7.65 7.65
SARIMA R 7.40 7.44 7.11 6.78 5.82 5.72
SARIMA Python 7.05 7.04 6.93 6.58 6.08 6.57
STL 6.87 6.85 6.93 6.98 7.33 7.48

Machine Learning
NNAR (R) 8.32 8.38 7.84 6.45 5.02 4.41
NNAR (Python) 7.01 7.77 8.41 8.50 8.41 7.03
RNN LSTM 6.85 7.76 8.41 8.48 8.40 6.86
GRU 5.78 6.01 6.24 6.29 6.41 6.57
RF 6.78 7.39 7.83 8.15 8.18 7.16
SVM 6.18 6.01 6.06 6.18 6.19 5.96
KNN 5.64 6.30 7.37 7.37 7.37 7.06
XGBoost 6.68 7.67 8.54 8.38 8.35 6.37

24

Table A1.6: Model Forecasts: CPI Excluding Food and Fuel Inflation

 Jul-18 Aug-18 Sep-18 Oct-18 Nov-18 Dec-18
Actual 6.16 6.02 5.74 6.24 5.75 5.58

Statistical/Decomposition
RW Forecast 6.39 6.34 6.29 6.24 6.19 6.14
ARIMA 6.44 6.44 6.44 6.44 6.44 6.44
SARIMA (R) 6.35 6.19 6.07 6.06 5.91 5.72
SARIMA (Python) 6.15 5.89 5.58 5.44 5.07 4.86
STL 6.38 6.41 6.43 6.43 6.43 6.47

Machine Learning
NNAR (R) 6.85 6.86 7.19 7.07 7.13 7.25
NNAR (Python) 7.01 7.77 8.41 8.50 8.41 7.03
RNN LSTM 6.28 5.98 5.82 5.52 6.06 5.54
GRU 5.88 5.80 5.65 5.47 5.68 5.51
RF 6.24 6.25 6.13 5.83 6.27 5.79
SVM 6.61 6.47 6.35 5.88 6.22 5.79
KNN 6.19 5.83 5.83 5.27 6.10 6.41
XGBoost 6.01 6.02 6.27 6.23 6.25 6.23

Table A1.7: Model Forecasts: Disaggregated CPI Headline

 Jul-18 Aug-18 Sep-18 Oct-18 Nov-18 Dec-18
Actual 4.17 3.69 3.77 3.38 2.33 2.19

Statistical/Decomposition
RW Forecast 4.95 4.93 4.91 4.89 4.87 4.86
ARIMA 4.82 5.03 5.32 5.27 5.01 5.03
SARIMA (R) 4.04 3.82 4.14 4.02 3.30 3.15
SARIMA (Python) 4.09 3.59 3.33 3.06 2.41 2.28
STL 5.13 5.15 5.00 5.03 5.22 5.31

Machine Learning
NNAR (R) 4.98 4.57 4.36 4.08 4.09 4.07
NNAR (Python) 5.22 5.13 5.15 5.28 4.85 3.66
RNN LSTM 4.85 4.35 4.04 3.97 3.91 3.20
GRU 5.40 5.13 5.09 4.93 4.75 4.65
RF 4.85 4.39 3.91 3.79 3.67 3.27
SVM 5.71 5.48 5.46 5.39 5.44 5.25
KNN 4.36 3.79 3.51 3.25 3.63 3.76
XGBoost 4.85 4.18 3.94 3.89 3.64 3.37

25

Chart A1.1: Performance Diagnostics: SARIMA (3,1,1)(2,1,1)12

26

Appendix 2: Forecasting Models

1. Statistical/Decomposition-based Models

Random Walk (RW)

According to the RW model, the best possible forecast of a variable is its last
observed value. A RW model with a ‘drift’ can be described as:

𝑦𝑦𝑡𝑡+ℎ = 𝛼𝛼 + 𝑦𝑦𝑡𝑡 + ∈𝑡𝑡+ℎ

RW (naïve) model is often used as a benchmark model for forecast evaluation
exercises. It has also been noted in the literature that it is difficult to beat simple
benchmark models such as the RW model (Atkeson and Ohanian, 2001). Therefore,
we choose the RW model as a benchmark against which all other models are
evaluated.

ARIMA

ARIMA or autoregressive integrated moving average model combines
autoregressive and moving average models. It is one of the most popular forecasting
methods for univariate time-series forecasting. It can be represented as:

ϕ(𝐵𝐵)(1 − 𝐵𝐵𝑀𝑀)𝑦𝑦𝑡𝑡 = 𝑆𝑆 + 𝜃𝜃(𝐵𝐵)𝜀𝜀𝑡𝑡

where, 𝜀𝜀𝑡𝑡 is a white noise process with zero mean and variance σ2, B is the backshift
operator, and ϕ(𝑧𝑧) and 𝜃𝜃(𝑧𝑧) are polynomials of order p and q, respectively. In essence,
this is a model of the form ARIMA (p,d,q) where p is the order of the autoregressive
(AR) term; d is the order of integration; and q is the order of the moving average (MA)
term9.

Seasonal ARIMA (SARIMA10)

The ARIMA model does not support seasonal data. It expects the input data to
be either non-seasonal or seasonally adjusted. However, such adjustment can lead to
loss of information leading to forecast errors, especially in the case of stochastic
seasonality in the data. The SARIMA model is a more general form of the ARIMA
model that explicitly supports univariate time-series data with a seasonal component.
It adds three new hyperparameters to model the seasonal component of the data. A

9 Estimation of ARIMA model generally involves finding the appropriate values for its hyperparameters, i.e. p, d
and q using a battery of diagnostics such as partial autocorrelation function (PACF) plots, unit root tests and
autocorrelation function (ACF) plots respectively. The model parameters are estimated using techniques such as
the least squares approach or the maximum likelihood-based estimation.
10 SARIMA/ARIMA models are implemented both in R (forecast package; see Hyndman and Khandakar, 2008)
and Python (pmdarima library), respectively. Final model reported is selected based on AIC and out-of-sample
forecasting performance.

27

model of this type is of the form SARIMA(p,d,q)(P,D,Q)m where (p,d,q) is the order of
the AR, integration and MA part of the non-seasonal component of the data, (P,D,Q)
is the order of the AR, integration and MA part of the seasonal component and m is
the seasonal frequency (e.g. m = 12 for monthly data; 4 for quarterly data). It can be
expressed as follows:

𝜙𝜙(𝐵𝐵𝑚𝑚)ϕ(B)(1 − 𝐵𝐵𝑚𝑚)𝐷𝐷(1 − 𝐵𝐵)𝑀𝑀𝑦𝑦𝑡𝑡 = 𝐶𝐶 + Φ(𝐵𝐵𝑚𝑚)𝜃𝜃(𝐵𝐵)𝜀𝜀𝑡𝑡

where 𝜙𝜙(𝑧𝑧) and Φ(𝑧𝑧) are polynomials of orders P and Q, respectively.

STL Decomposition

STL or the ‘Seasonal and Trend Decomposition with Loess’ is a versatile and
robust method for decomposing a time series into its trend, seasonal and remainder
components. Loess is a method for estimating non-linear relationships. Originally
developed by Cleveland et al. (1990), the STL model decomposes a time series in the
following form:

𝑦𝑦𝑡𝑡 = 𝐹𝐹(𝑆𝑆𝑡𝑡 ,𝑇𝑇𝑡𝑡 ,𝐸𝐸𝑡𝑡)

where 𝑆𝑆𝑡𝑡 ,𝑇𝑇𝑡𝑡 ,𝐸𝐸𝑡𝑡 are the seasonal, trend and remainder components of the data at time
t. The STL technique has some obvious advantages over other decomposition-based
methods. First, it can handle any type of seasonality – daily, weekly, monthly, and so
on. Second, it allows the seasonal component to change over time, with the rate of
change controlled by the user. Third, the smoothness of the trend can be controlled
by the user. Fourth, it is robust to outliers such that occasional outliers will not affect
the trend or the seasonal component of the model. Among the disadvantages, the STL
method can only model ‘additive’ decomposition, i.e. 𝜋𝜋𝑡𝑡 = 𝑆𝑆𝑡𝑡 + 𝑇𝑇𝑡𝑡 + 𝐸𝐸𝑡𝑡 and cannot
handle calendar/trading day variation in the data. An STL-based decomposition of the
CPI headline series is shown below.

Chart A2.1: Decomposed (Additive) Series – CPI Headline Inflation

28

2. ML Algorithms

For ML algorithms, we consider a forecast approach where inflation h period-
ahead is modelled as a function of input variables measured at time t, i.e.

𝑦𝑦𝑡𝑡+ℎ = 𝐹𝐹(𝑋𝑋𝑡𝑡) + 𝜇𝜇𝑡𝑡+ℎ

where F(.) is a non-linear function to be approximated by the class of ML models
described below, 𝑋𝑋𝑡𝑡 is a set of q predictors (lagged values of actual inflation) and 𝜇𝜇𝑡𝑡+ℎ
is the forecast error.

Decision Trees, Bagging and Boosting

In its ML application, a decision (also called a regression) tree is a non-
parametric model that relies on recursive binary partitioning of the covariate space.
Usually displayed in a graph which has the format of a binary decision tree with split
nodes and terminal nodes (also called leaves), and which grows from the root node to
the terminal nodes.

Chart A2.2: A Regression Tree (With Two Features x1 and x2)

The left panel in Chart A2.2 shows this binary partitioning of target variable
space in the case of two features. The graph form of a binary tree with split and
terminal nodes for the same is shown in the right panel of Chart A2.2. Regression
trees, however, by themselves are found to be weak learners or weak predictors of
data as they are prone to the problem of overfitting. To overcome this, many solutions
have been proposed which are usually based on ‘bagging’ or ‘boosting’ principles. The
idea is to have many independent tree models which jointly outperform any single tree
model.

29

Random Forest (RF) Algorithm: Originally proposed by Breiman (2001), the RF
algorithm reduces the variance of such regression trees and is based on bagging11 or
the bootstrapped12 aggregation of predictions from randomly constructed trees.
Therefore, the RF algorithm achieves this by, first, growing an ensemble of decision
trees; second, using a randomised sample (with replacement) of input data as well as
a random subset of predictor variables to grow n individual regression trees; third, by
testing prediction accuracy on the out-of-bag (OOB) data, i.e. data left out from the
initial sample; and, fourth, by averaging out all the final predictions to minimise
prediction error. Formally, each tree in a random forest is built using the following steps
where T represents the entire forest, t represents a single tree, for t = 1 to T:

i. Create a bootstrap sample with replacement, S from the training set comprising
X, Y and label these Xa, Ya;

ii. train the tree ft on Xa, Ya; and
iii. average the predictions to arrive at a final prediction.

In a regression problem, predictions for the test instances are made by taking the

mean of the predictions made by all trees. This can be represented as follows:

𝑌𝑌� = 1/𝑁𝑁�𝑓𝑓𝑀𝑀(𝑋𝑋)
𝑇𝑇

𝑡𝑡=1

Readers can refer to Liaw and Wiener (2002) for an excellent summary of the
workings of an RF algorithm. Random forests can deal with very large numbers of
explanatory variables, and the proposed model is highly non-linear.

Extreme Gradient Boosting (XGBoost) Algorithm: Developed by Chen and Guestrin
(2016), XGBoost has been one of the best performing models at international
forecasting competitions. Akin to the RF algorithm, an XGBoost model is also a
decision tree-based technique. It is also an ensemble learning method offering a
systematic solution to combine the predictive power of multiple learners, when relying
on single models may not be advisable. The resultant is a single model which gives
the aggregated output from several models. XGBoost uses boosting, where decision
trees are built sequentially (rather than simultaneously as in the case of random
forests) such that each subsequent tree aims to reduce the errors of the previous tree.
Each tree learns from its predecessors and updates the residual errors. Hence, the
tree that grows next in the sequence will learn from an updated version of the
residuals. The objective function of XGBoost at iteration t that needs to be minimised
is given by:

11 Averaging predictions across models estimated with several different bootstrap samples is called ‘bagging’ and
is used in order to improve the performance of an estimator.
12 Bootstrapping involves choosing (with replacement) a sample of size m from a dataset of size n to estimate the
sampling distribution of some statistic. A variation is the ‘m out of n bootstrap’ which draws a sample of size m from
a dataset of size n > m.

30

𝐿𝐿(𝑡𝑡) = �𝑅𝑅(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖
(𝑡𝑡−1)

𝑛𝑛

𝑖𝑖=1

+ 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)) + Ω(𝑓𝑓𝑡𝑡)

Which can be simplified using a second-order Taylor approximation to the following
form, where 𝑃𝑃𝑖𝑖 and ℎ𝑖𝑖 are the first and second order gradients of the loss function:

𝐿𝐿�(𝑡𝑡) = �[𝑃𝑃𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

+
1
2
𝑃𝑃𝑖𝑖𝑓𝑓𝑡𝑡2(𝑥𝑥𝑖𝑖)] + Ω(𝑓𝑓𝑡𝑡)

Being at iteration t, the next step would be to build a tree learner that achieves the
maximum possible reduction of loss, which in turn is built iteratively through the exact
greedy algorithm13.

Inbuilt within the XGBoost algorithm is the usage of a gradient descent algorithm to
train the model and minimise the error in prediction. Gradient descent is a first-order
iterative optimisation algorithm for finding the minimum of a function. To find the
local minima of a function using this approach, steps proportional to the negative of
the gradient of the function are taken at the current point (Chart A2.3). The steps are
in turn controlled using the learning rate which decides the speed and accuracy with
which optimum solutions are found.

Chart A2.3: Gradient Descent and Learning Rate

Artificial Neural Network (ANN) and Deep Learning14 models

A neural network (NN) model can be depicted as a set of ‘neurons’ which are
organised in the form of layers. The building block of a NN is a perceptron shown in
Chart A2.4 which can be represented as,

13 See https://towardsdatascience.com/xgboost-mathematics-explained-58262530904a.
14 We extensively refer to Goodfellow et al., 2016 (See http://www.deeplearningbook.org/).

https://towardsdatascience.com/xgboost-mathematics-explained-58262530904a
http://www.deeplearningbook.org/

31

𝑦𝑦 = 𝐹𝐹{𝑥𝑥(𝑘𝑘) ∙ 𝜔𝜔(𝑘𝑘)}

The most basic NN model has three distinct set of layers: one, an input layer
representing inputs of the model; second, a hidden layer representing a set of
functional nodes; and, third, an output layer representing the output of the model. The
presence of the hidden layer lends non-linearity to the NN model, without which an NN
model is akin to a linear regression model.

Chart A2.4: Basic Perceptron Model

In the equation above 𝑥𝑥(𝑘𝑘) is a vector of input representing the input layer and
ω is a corresponding vector of weights. In the hidden layer, an input-weight
combination is transformed via a non-linear function F{.}, such as a sigmoid function,
to be passed on to the next layer. The next layer could be another hidden layer or the
output layer. For instance, inputs into a hidden node j in are combined linearly as:

𝑧𝑧𝑗𝑗 = 𝐴𝐴𝑗𝑗 + �𝜔𝜔𝑖𝑖,𝑗𝑗𝑥𝑥𝑖𝑖

4

𝑖𝑖=1

while the input can be then transformed using a non-linear sigmoid function as:

𝐴𝐴(𝑧𝑧) =
1

1 + 𝑀𝑀−𝑧𝑧

Neural Network Autoregression (NNAR) Model

The feed forward fully connected type of network is a type of NN architecture
which can consist of several hidden layers of computational nodes stacked between
an input and an output layer (Chart A2.5). Since the data only move in one direction
through the network, the model is feed forward in nature. Likewise, the network is fully
connected, as output of each node in a hidden layer feeds into each of the nodes in
the following layer as an input.

32

Chart A2.5: Basic FC Network Model with One Hidden Layer

Such a network can be compared to a linear autoregressive model, in the sense

that lagged values of a time-series variable are used as an input into the model. Thus,
some practitioners often term this model as a neural network autoregression (NNAR)
model15. An NNAR model using last p observations as an input is comparable to an
ARIMA(p,0,0) model but without the assumption of linear parameters. Additionally, to
capture seasonal data, the model can be fed with lagged seasonal terms as inputs,
i.e. values observed at the same time in the previous year. The presence of the hidden
layer allows for non-linear mapping between input and output of the model.

We consider a model of the form NNAR (p, P, k) where p indicates the number
of autoregressive lags, P indicates the number of seasonal autoregressive lags and k
indicates the number of nodes in the hidden layer. We consider only one hidden layer.
In training the model, the weights start with random values which are then updated by
learning from the observed data. The model is trained several times (each time a
model is trained is called an epoch) using different randomised initial values for
weights. The final prediction is made by averaging the predictions across all epochs.

Recurrent Neural Network – Long Short-term Memory (RNN-LSTM) Network

Traditional ANNs, such as the one described earlier, assume that all inputs are
independent of each other. This assumption breaks down in the case of sequential
data. The RNN models (Rumelhart et al., 1988) which were developed during the
application of neural networks to language parsing, speech recognition and
translation, are suitable when the data has a sequential structure or temporal structure.
Since this type of model can capture the sequence in which input data is fed into them,
they are extremely suitable for modelling time-series data. We focus on the long short-

15 We implement the NNAR model in both R (forecast package) and Python but report only the better performing
model. See Hyndman and Athanasopoulos (2018) for more details on the NNAR model
(https://otexts.com/fpp2/nnetar.html).

https://otexts.com/fpp2/nnetar.html

33

term memory (LSTM) type network first suggested by Hochreiter and Schmidhuber
(1997). It draws on the broad contextual features of the model (long-run memory) as
well as the information provided by the recent inputs of the sequence (short-run
memory).

A nice explanation of the LSTM architecture is provided by Hall and Cook
(2017), which is depicted in Chart A2.6. Each Input 𝑥𝑥𝑖𝑖 is fed into a computational node
that also accepts inputs from the output of the preceding layer (denoted 𝐴𝐴𝑖𝑖,ℎ𝑖𝑖). The
term 𝐴𝐴𝑖𝑖 represents the state of the network at the ith member of the sequence - the long
running memory for the sequence, as given by the elements of the sequence to which
the network has been exposed. The term ℎ𝑖𝑖 is the output of the layer that corresponds
to a given element i in the sequence. This architecture can thus be understood as
consisting of many layers and having the following properties: each layer corresponds
to a particular input element in the sequence; each layer receives the network's long-
run understanding of the previous sequence; and each layer receives the output
generated from the previous element in the sequence.

Chart A2.6: Unrolled LSTM Architecture

Another way to visualise an RNN-LSTM architecture would be to look at its
‘rolled’ version (Chart A2.7). The ‘rolled’ version of a recurrent (LSTM) architecture
represents the architecture as a ‘cell’. The arrow from the cell to itself indicates the
feedback loop created as the output from one element of the sequence taken as input
along with the next element in the sequence.

34

Chart A2.7: Rolled Recurrent Model

The backpropagation through time (BPTT) algorithm is used to train the RNN
model, i.e. find the optimal weights for the network. The RNN is shown one input at
each time step to predict one output. BPTT unrolls all input time steps, with each time
step having one input time step, one copy of the network, and one output. Prediction
errors are then calculated and collected for each time step. The network is then rolled
back to update the weights. We can summarise the algorithm as follows: (i) present a
sequence of time steps of input and output pairs to the network; (ii) unroll the network,
then calculate and accumulate errors across each time step; (iii) roll-up the network
and update weights; (iv) repeat. However, BPTT can be computationally expensive as
the number of time steps increases. The final architecture of the model can be summarised
by the following set of equations:

𝒊𝒊 = 𝝈𝝈(𝑾𝑾𝒊𝒊𝒉𝒉𝒕𝒕−𝟏𝟏 + 𝑼𝑼𝒊𝒊𝒙𝒙𝒕𝒕)

𝒇𝒇 = 𝝈𝝈(𝑾𝑾𝒇𝒇𝒉𝒉𝒕𝒕−𝟏𝟏 + 𝑼𝑼𝒇𝒇𝒙𝒙𝒕𝒕)

𝒐𝒐 = 𝝈𝝈(𝑾𝑾𝒐𝒐𝒉𝒉𝒕𝒕−𝟏𝟏 + 𝑼𝑼𝒐𝒐𝒙𝒙𝒕𝒕)

𝒈𝒈 = 𝒕𝒕𝒂𝒂𝒏𝒏𝒉𝒉(𝑾𝑾𝒈𝒈𝒉𝒉𝒕𝒕−𝟏𝟏 + 𝑼𝑼𝒈𝒈𝒙𝒙𝒕𝒕)

𝒄𝒄𝒕𝒕 =(𝒄𝒄𝒕𝒕−𝟏𝟏 ⊗𝒇𝒇)⊕(𝒈𝒈⊗𝒊𝒊)

𝒉𝒉𝒕𝒕 = 𝐭𝐭𝐚𝐚𝐧𝐧𝐡𝐡(𝒄𝒄𝒕𝒕)⨂ 𝒐𝒐

Here ‘i’,’f’ and ‘o’ are the input, forget and output gates. They are computed
using the same equations but with different parameter matrices. The sigmoid function
restricts the output of these gates between 0 and 1, so the output vector produced can
be multiplied element-wise with another vector to define how much of the second
vector can pass through the first one. The forget gate controls for how much of the
previous state h(t-1) one wants to allow to pass through. The input gate defines how
much of the newly computed state for the current input x(t) is to be let through, and the
output gate is defined by how much of the internal state is to be exposed to the next
layer. The internal hidden state ‘g’ is computed based on the current input x(t) and the
previous hidden state h(t-1). Given ‘i’, ‘f’, ‘o’ and ‘g’, one can now easily calculate the

35

cell state C(t) at time t in terms of C(t-1) at time t-1 multiplied by the forget gate and the
state ‘g’ multiplied by the input gate ‘i’. This basically represents an approach to
combine the previous memory and the new input. Setting the forget gate to ‘o’ ignores
the old memory and setting the input gate to ‘o’ ignores the newly computed state.
Finally, the hidden state h(t) at time t is computed by multiplying the memory C(t) with
the output gate.

Gated Recurrent Unit (GRU) Network

Over the past few years, the Gated Recurrent Unit or GRU has also emerged
as an effective new tool for modelling sequential data (Chung et al., 2015). They have
fewer parameters than LSTM but often deliver similar or better performance. Just like
the LSTM, the GRU controls the flow of information, but without the use of a typical
memory unit. Instead of using a separate cell state, the GRU uses the hidden state as
memory. The following Chart A2.8 shows the topology of a GRU memory block (node).

Chart A2.8: GRU Architecture

It contains an update gate (z) and reset gate (r). The reset gate determines how
to combine the new input with previous memory. On the other hand, the update gate
defines how much of the previous memory to use in the present. Together these gates
give the model the ability to explicitly save information over many time steps. The GRU
is designed to adoptively reset or update its memory content. The GRU is also trained
using BPTT. The final architecture of the model can be summarised by the following
set of equations:

 𝒛𝒛𝒕𝒕 = 𝝈𝝈𝒈𝒈(𝑾𝑾𝒛𝒛𝒙𝒙𝒕𝒕 + 𝑼𝑼𝒛𝒛𝒉𝒉𝒕𝒕−𝟏𝟏 + 𝒃𝒃𝒛𝒛)

 𝒓𝒓𝒕𝒕 = 𝝈𝝈𝒈𝒈(𝑾𝑾𝒓𝒓𝒙𝒙𝒕𝒕 + 𝑼𝑼𝒓𝒓𝒉𝒉𝒕𝒕−𝟏𝟏 + 𝒃𝒃𝒓𝒓)

𝒉𝒉𝒕𝒕 =𝒛𝒛𝒕𝒕 ∘𝒉𝒉𝒕𝒕−𝟏𝟏 +(𝟏𝟏−𝒛𝒛𝒕𝒕)∘𝝈𝝈𝒉𝒉(𝑾𝑾𝒉𝒉𝒙𝒙𝒕𝒕 +𝑼𝑼𝒉𝒉(𝒓𝒓𝒕𝒕 ∘𝒉𝒉𝒕𝒕−𝟏𝟏)+𝒃𝒃𝒉𝒉)

Now, x(t) is input vector; h(t) is output vector; z(t) the update gate vector; r(t) the
reset gate vector; W, U and b are parameter matrices; vector σ(g) is the original sigmoid
function; and, σ(h) is a hyperbolic function.

36

k-Nearest Neighbours (KNN) Regression

One of the simplest and best-known non-parametric algorithms is the k-nearest
neighbours regression. In this method, an observation is modelled as its k nearest
observations in the feature space, such that for a regression problem, an observation
is assigned to the mean value of its nearest neighbours, where weights may be
applied.

Ban et al. (2013) describe the intuition behind the application of this approach
to univariate time series: “consistent data-generating processes often produce
observations of repeated patterns of behavior. Therefore, if a previous pattern can be
identified as similar to the current behavior of the time series, the subsequent behavior
of previous pattern can provide valuable information to predict the behavior in the
immediate future.” In other words, this task requires ranking historic events in terms of
‘similarity’ (these are usually referred to as fitting or learning events). Then each an
event is assigned to a class to which a majority of these observations belong. Hence,
KNN is completely non-parametric – no assumptions are made about the shape of the
decision boundary. In order to determine ‘similarity’, a metric of distance is required in
addition to a specific value of k that minimises prediction error. Various metrics have
been used in order to measure distance in the multidimensional space, including
Euclidian distance (Härdle and Vieu, 1992).

The algorithm works as follows. It computes the Euclidean distance from the
input data to the target data. Given a value for k and a prediction point 𝑥𝑥𝑖𝑖, KNN
regression then identifies the k observations that are closest to 𝑥𝑥𝑖𝑖, represented by 𝑁𝑁0.
It orders each observation in the training sample in the increasing order of distance.
An optimal number k of nearest neighbours is found based on a validation technique
such as cross-validation. Finally, it calculates an inverse distance weighted average
with the k-nearest multivariate neighbours to estimate F(𝑥𝑥𝑖𝑖) using the average of all
the responses in 𝑁𝑁0. In other words:

𝐹𝐹�(𝑥𝑥) =
1
𝑘𝑘
� 𝑦𝑦𝑖𝑖
𝑥𝑥𝑖𝑖∈𝑁𝑁0

An example of a KNN regression model fitting on training data is provided in
Chart A2.9. The black straight line shows the true model while the blue line is the
model fitted by KNN regression when k equals 1 (left panel) and k equals (5). A
smoother model fit reflecting the true model is obtained as k moves close to its
optimum value.

37

Chart A2.9: KNN Regression (left – k = 1; right – k = 5)

Support Vector Machine (SVM) Regression

In many situations, the data may not be linearly separable making it difficult to
model via a line or a hyperplane. In addition, the exact position of this separation
boundary might also not be known. To solve the first issue, the data can be projected
into other dimension(s) such that the data is linearly separable given the projection is
chosen aptly. The second issue can be solved by fixing a way to identify the best
separation line. Intuitively, these solutions are a major part of the SVM algorithm (Chart
A2.10). After projection of data into a new feature space, the SVM algorithm defines
the best line as the one which has the maximum vertical distance to its closest
observations. These closest data points are called support vectors from which the
algorithm derives its name.

Consider the linear case to find 𝑓𝑓(𝑥𝑥) with the minimal norm value which can be
formulated as an optimisation problem as follows:

𝑓𝑓(𝑥𝑥) = 𝛼𝛼 + 𝑥𝑥′𝛽𝛽

𝑆𝑆𝑅𝑅𝑀𝑀. 𝐽𝐽(𝛽𝛽) =
1
2

 𝛽𝛽𝛽𝛽′

𝐴𝐴𝑆𝑆𝐴𝐴𝑠𝑠𝑀𝑀𝑆𝑆𝑅𝑅 𝑅𝑅𝑅𝑅 ∀𝑀𝑀: |𝑦𝑦𝑛𝑛 − (𝑥𝑥′𝑛𝑛𝛽𝛽 + 𝛼𝛼)| ≤ 𝜀𝜀

where 𝑥𝑥𝑛𝑛 is a set of N feature observations with 𝑦𝑦𝑛𝑛 observed label. Clearly, no function
exists to satisfy these constraints for all points. In order to deal with unfeasible
constraints, slack variables 𝜏𝜏𝑛𝑛 and 𝜏𝜏𝑛𝑛∗ for each point in 𝑥𝑥𝑛𝑛. The slack variables allow
the regression error to exist up to 𝜏𝜏𝑛𝑛 and 𝜏𝜏𝑛𝑛∗ and still satisfy required constraints. Thus,
the problem is reduced to:

38

𝑆𝑆𝑅𝑅𝑀𝑀. 𝐽𝐽(𝛽𝛽) =
1
2

 𝛽𝛽𝛽𝛽′ + 𝐶𝐶�(𝜏𝜏𝑛𝑛 +
𝑁𝑁

𝑛𝑛=1

𝜏𝜏𝑛𝑛∗)

𝐴𝐴𝑆𝑆𝐴𝐴𝑠𝑠𝑀𝑀𝑆𝑆𝑅𝑅 𝑅𝑅𝑅𝑅 ∀𝑀𝑀: |𝑦𝑦𝑛𝑛 − (𝑥𝑥′𝑛𝑛𝛽𝛽 + 𝛼𝛼)| ≤ 𝜀𝜀 + 𝜏𝜏𝑛𝑛

 ∀𝑀𝑀: |(𝑥𝑥′𝑛𝑛𝛽𝛽 + 𝛼𝛼) − 𝑦𝑦𝑛𝑛| ≤ 𝜀𝜀 + 𝜏𝜏𝑛𝑛∗

 ∀𝑀𝑀: 𝜏𝜏𝑛𝑛 ≥ 0; 𝜏𝜏𝑛𝑛∗ ≥ 0

where C is a positive numeric value to control the penalty on observations that lie
outside the margin and prevents overfitting determining the smoothness of 𝑓𝑓(𝑥𝑥) and
the deviations from the margin. Likewise, the same algorithm can be extended to
regression problems in the general case of non-linear separation boundary.

The SVM is an extension of the support vector machine classifier that results
from enlarging the feature space in a specific way, using kernels, in order to
accommodate a non-linear boundary between the observations. A kernel is a function
that quantifies the similarity of two observations. In its general form, it can be shown
as follows:

𝐹𝐹(𝑥𝑥) = 𝛽𝛽0 + �𝛼𝛼𝑖𝑖𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖)
𝑖𝑖∈𝑅𝑅

where F(.) is the SVM and K(.) is the kernel, while the model parameters have to be
learned from the data. Some of the most popular forms of kernel used by practitioners
are a polynomial kernel of the form 𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) = (1 + ∑ 𝑥𝑥𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖′𝑗𝑗

𝑝𝑝
𝑗𝑗=1)d or a radial kernel of

the form 𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) = 𝑀𝑀𝑥𝑥𝑒𝑒(−𝛾𝛾∑ (𝑥𝑥𝑖𝑖𝑗𝑗 − 𝑥𝑥𝑖𝑖′𝑗𝑗
𝑝𝑝
𝑗𝑗=1)2).

Chart A2.10: SVM and Kernel Transformation

39

References

Ahmed, N. K., Atiya, A. F., Gayar, N. E., and El-Shishiny, H. (2010). An empirical
comparison of machine learning models for time series forecasting. Econometric
Reviews, 29(5–6), 594–621.

Atkeson, A., & Ohanian, L. E. (2001). Are Phillips curves useful for forecasting
inflation? Federal Reserve Bank of Minneapolis Quarterly Review, 25(1), 2–11.

Ban, T., Zhang, R., Pang, S., Sarrafzadeh, A., & Inoue, D. (2013). Referential knn
regression for financial time series forecasting. In International Conference on
Neural Information Processing (pp. 601–608). Berlin, Heidelberg: Springer.

Bates, J. M., & Granger, C. W. (1969). The combination of forecasts. Journal of the
Operational Research Society, 20(4), 451–468.

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5–32. Retrieved from:
https://link.springer.com/content/pdf/10.1023/A:1010933404324.pdf.

Chakraborty, C., & Joseph, A. (2017). Machine learning at central banks (No. 674).
Bank of England.

Chaudhuri, K., & Bhaduri, S. N. (2019). Inflation Forecast: Just use the Disaggregate
or Combine it with the Aggregate. Journal of Quantitative Economics, 1-13.

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2015). Gated feedback recurrent
neural networks. In International Conference on Machine Learning, vol. 37 (pp.
2067–2075).

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (pp. 785–794). Retrieved from:
https://arxiv.org/pdf/1603.02754.pdf.

Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. (1990). STL: A
seasonal-trend decomposition. Journal of Official Statistics, 6(1), 3–73.

Cook, T., & Smalter Hall, A. (2017). Macroeconomic indicator forecasting with deep
neural networks. Federal Reserve Bank of Kansas City, Research Working Paper
(17–11).

Diebold, F. X. (1998). The past, present, and future of macroeconomic
forecasting. Journal of Economic Perspectives, 12(2), 175–192.

Elliott, G., & Timmermann, A. (2005). Optimal forecast combination under regime
switching. International Economic Review, 46(4), 1081–1102.

https://link.springer.com/content/pdf/10.1023/A:1010933404324.pdf
https://arxiv.org/pdf/1603.02754.pdf

40

Garcia, M. G., Medeiros, M. C., & Vasconcelos, G. F. (2017). Real-time inflation
forecasting with high-dimensional models: The case of Brazil. International Journal
of Forecasting, 33(3), 679–693.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
https://www.deeplearningbook.org/.

Härdle, W., & Vieu, P. (1992). Kernel regression smoothing of time series. Journal of
Time Series Analysis, 13(3), 209–232.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9(8), 1735–1780.

Hyndman, R., & Khandakar, Y. (2008). Automatic time series forecasting: The forecast
package for R. Journal of Statistical Software, 27(3), 1–22.
doi:http://dx.doi.org/10.18637/jss.v027.i03.

Hyndman, R. J., & Athanasopoulos, G. (2018) Forecasting: principles and practice
(2nd ed.), Melbourne: OTexts:.

Joseph, A. (2019). Shapley regressions: A framework for statistical inference on
machine learning models. Bank of England Staff Working Paper 784.

Liaw, A., & Wiener, M. (2002). Classification and regression by random Forest. R
news, 2(3), 18–22.

Makridakis, S., & Hibon, M. (2000). The M3-Competition: Results, conclusions and
implications. International Journal of Forecasting, 16(4), 451–476.

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018a). Statistical and Machine
Learning forecasting methods: Concerns and ways forward. PloS one, 13(3),
e0194889.

— (2018b). The M4 Competition: Results, findings, conclusion and way
forward. International Journal of Forecasting, 34(4), 802–808.

Malhotra, A., & Maloo, M. (2017). Understanding food inflation in India: A machine
learning approach. Retrieved from: https://arxiv.org/ftp/arxiv/papers/1701/1701.08789.pdf.

McAdam, P., & McNelis, P. (2005). Forecasting inflation with thick models and neural
networks. Economic Modelling, 22(5), 848–867.

Medeiros, M. C., Vasconcelos, G. F., Veiga, Á., & Zilberman, E. (2019). Forecasting
Inflation in a data-rich environment: the benefits of machine learning
methods. Journal of Business & Economic Statistics, 1-45.

Mullainathan, S., & Spiess, J. (2017). Machine learning: An applied econometric
approach. Journal of Economic Perspectives, 31(2), 87–106.

https://www.deeplearningbook.org/
http://dx.doi.org/10.18637/jss.v027.i03
https://arxiv.org/ftp/arxiv/papers/1701/1701.08789.pdf

41

Nakamura, E. (2005). Inflation forecasting using a neural network. Economics
Letters, 86(3), 373–378.

Owyang, M. T., & Shell, H. (2018). Dealing with the leftovers: Residual seasonality in
GDP. The Regional Economist, 26(4).

Peneva, E. V., & Sadee, N. (2019). Residual seasonality in core consumer price
inflation: An update (No. 2019-02-12). Board of Governors of the Federal Reserve
System (US).

Pescatori, A., & Zaman, S. (2011). Macroeconomic models, forecasting, and
policymaking. Economic Commentary, 2011-19, 5 October.

Pradhan, R. P. (2011). Forecasting inflation in India: An application of ANN
Model. International Journal of Asian Business and Information Management
(IJABIM), 2(2), 64–73.

Rani, S. J., Haragopal, V. V., & Reddy, M. K. (2017). Forecasting inflation rate of India
using neural networks. International Journal of Computer Applications, 158(5), 45–
48.

 RBI. (2014). Report of the Expert Committee to Revise and Strengthen the Monetary
Policy Framework (Chairman: Urjit R. Patel), Reserve Bank of India,

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1988). Learning representations by
back-propagating errors. Cognitive modeling, 5(3), 1.

Sanyal, A., & Roy, I. (2014). Forecasting major macroeconomic variables in India:
Performance comparison of linear, non-linear models and forecast combinations.
RBI Working Paper Series No. 11/2014.

Smith, J., & Wallis, K. F. (2009). A simple explanation of the forecast combination
puzzle. Oxford Bulletin of Economics and Statistics, 71(3), 331–355.

The Economist (2017). The world’s most valuable resource is no longer oil, but
data. The Economist: New York, NY, USA. Retrieved from:
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-
longer-oil-but-data.

Ülke, V., Sahin, A., & Subasi, A. (2018). A comparison of time series and machine
learning models for inflation forecasting: Empirical evidence from the USA. Neural
Computing and Applications, 30(5), 1519–1527.

Varian, H. R. (2014). Big data: New tricks for econometrics. Journal of Economic
Perspectives, 28(2), 3–28.

Zhang, G. P. (2007). Avoiding pitfalls in neural network research. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 37(1), 3–
16.

https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data

