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Macroeconomic Forecasting in India: Does Machine Learning 
Hold the Key to Better Forecasts? 

 
Bhanu Pratap and Shovon Sengupta∗ 

 
Abstract 

Forecasting of macroeconomic indicators is a challenging task, compounded by 
complex processes and dynamic nature of the macroeconomy. With recent 
advancements in computing power and the advent of data, machine learning 
methods have been explored as an alternative to traditional forecasting methods. 
We review the paradigm of machine learning and apply it to forecast inflation for 
India. We train various machine learning algorithms and test their forecasting 
accuracy against standard statistical methods. Our findings suggest that machine 
learning methods are generally able to outperform standard statistical models. 
Further, we find that combining forecasts from different competing models improves 
forecasting accuracy when compared to individual model forecasts. Also, direct 
forecast of headline inflation provides better forecast than the forecast based on 
different components of inflation. Lastly, our analysis also finds preliminary 
evidence for stochastic seasonality in the inflation series for India.  
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Macroeconomic Forecasting in India: Does Machine Learning 
Hold the Key to Better Forecasts? 

 

Introduction 

Macroeconomic forecasters have traditionally relied upon two different 
approaches – structural and non-structural (Diebold, 1998). The structural approach 
is guided by economic theory for model specification while the non-structural approach 
focuses on exploiting the specific properties of the underlying data without explicitly 
relying on any economic theory. Non-structural models attach more importance to 
predictive accuracy over causal inference and are useful for short-term unconditional 
forecasting. Time-series models, like the univariate autoregressive integrated moving 
average (ARIMA) or the multivariate vector autoregression (VAR) models, are usually 
the preferred non-structural models (Pescatori and Zaman, 2011). Linearity in 
parameters is the key assumption of such time-series models. However, as it was 
observed during the 1980s and 1990s, linear models failed to identify macroeconomic 
business cycles, periods of extreme volatility and regime changes which led non-linear 
models to gain more attention (Sanyal and Roy, 2014).  

More recently, machine learning (ML) algorithms have also been proposed in 
the literature on forecasting as an alternative to statistical models. With the 
advancement in computation and availability of high-frequency data, a considerable 
amount of research is focusing on utilising ML methods (especially Neural Network 
[NN] models) for time-series predictions, methodological advancements and accuracy 
improvements (Makridakis et al., 2018a). While both statistical and ML models aim at 
improving prediction accuracy by minimising a loss function, they differ in terms of their 
approach to minimise the loss function – the former uses linear processes and the 
latter depends on non-linear algorithms. Yet, the much-claimed superiority of ML 
models over statistical models cannot be taken as given (Zhang, 2007; Makridakis et 
al., 2018a). This is largely an empirical question which needs to be tested carefully 
and likely depends on the target indicator, underlying data generating process (DGP), 
forecast horizon and data quality. Additionally, new developments are taking place 
across sectors with the emergence of ‘Big Data’, so much so that data is called the 
new oil (The Economist, 2017). Applications of Big Data and ML-based analytics are 
also increasingly being used by central banks. Large central banks have embarked on 
establishing their own data analytics teams with the aim to tackle key issues related 
to market regulation, supervision, surveillance, risk management and monetary 
policymaking (Chakraborty and Joseph, 2017). For central banks, such advancements 
call for addition of newer tools to their analytical toolkit – ones which are adept at 
handling large volume, high-frequency data.  
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In the Indian context, the Reserve Bank of India (RBI) formally adopted a 
flexible inflation targeting (FIT) regime in 2016. Given the forward-looking nature of 
monetary policy, forecasts of inflation play an important role in policy formulation. In 
this paper, we review various state-of-the-art ML algorithms with the aim to familiarise 
the readers with this alternative approach to predictive modelling. We select consumer 
price index (CPI) inflation and three of its components as target variables for our 
forecasting exercise. CPI-based inflation is chosen because it is a target for monetary 
policy, published regularly with a high frequency, and is subject to relatively fewer 
revisions. After introducing various statistical and ML models, we use them to generate 
forecasts for all four series of inflation and compare these forecasts with those from 
our benchmark model. Resultant out-of-sample forecasts are compared using 
standard measures of forecast accuracy. Additionally, we analyse two related issues 
in the context of forecasting inflation – first, combination of forecasts from different 
competing models; second, comparative approaches of directly forecasting headline 
inflation versus forecasting each component and combining them to generate a final 
forecast for headline inflation.  

The key findings of our paper are as follows. First, ML methods generally 
outperformed standard statistical methods over the out-of-sample forecast period. 
Second, simple average-based forecast combination outperformed complex weighted 
average combination of forecasts. Such forecast combination also provided better 
forecasting accuracy over individual methods in almost all cases. Third, directly 
forecasting headline inflation resulted in large accuracy gains over the approach of 
individually forecasting and combining inflation components, for any given forecasting 
method. In fact, forecasts based on a combination of best performing methods for each 
component also did not perform better than direct forecasts. To our knowledge, very 
few studies have explored the application of ML techniques to model or forecast 
inflation in India (Malhotra and Maloo, 2017; Pradhan, 2011; Rani et al., 2017). We 
also highlight several key features of the ML approach which may result in accuracy 
gains when adopted for modelling and forecasting using econometric techniques.  

The rest of the paper is organised as follows. Section II highlights evidence on 
the performance of ML-based forecasting methods in predicting macroeconomic and 
financial time-series indicators. We also discuss the findings from various rounds of 
the Makridakis Competitions, an international series of large-scale forecasting 
competitions being organised since 1982. In Section III, we briefly review the various 
statistical and ML models used in the paper, in addition to discussing the data, 
modelling and evaluation strategy. Results from the forecasting exercise are 
presented in Section IV. We conclude with a summary of findings and chart out the 
scope for future research in Section V.  
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II. Machine Learning, Makridakis Competitions and Empirical Evidence 

II.1. Machine learning as a forecasting approach 

The traditional econometric methods of forecasting focus on parameter 
estimation, i.e. to produce good coefficient estimates (�̂�𝛽) that explain the underlying 
relationship between two variables, say 𝑦𝑦 and 𝑥𝑥. These methods face a variety of 
challenges which include but are not limited to model selection, variable selection and 
uncertainty regarding their forecasts. Other issues related to macroeconomic data 
such as serial correlation, heteroskedasticity and multicollinearity compound their 
problems. In such a scenario, forecasters usually rely upon economic theory and 
intuition, their own judgement and standard statistical approaches to overcome such 
challenges. 

ML methods provide an alternative approach to forecasting by aiming to directly 
produce predictions of 𝑦𝑦 from 𝑥𝑥, by fitting complex yet flexible functional forms on the 
data. Thus, the focus of the ML approach to forecasting shifts to producing better out-
of-sample predictions (𝑦𝑦�) directly. A broad introduction of ML is provided by Varian 
(2014) and Mullainathan and Spiess (2017). Underlining the strong ability of ML to 
make quality predictions, they list down several straight-forward applications of ML in 
economics. Mullainathan and Spiess conclude that ML deserves its ‘own place in the 
econometric toolbox’.  

A logical starting point for the ML approach to forecasting would be to 
understand model complexity and the trade-off between bias and variance – the two 
main sources of forecast error. Errors due to inappropriate assumptions about the data 
are attributed to bias, while variance of a model describes errors due to a model’s 
sensitivity to changes in the data. Both bias and variance are dependent on model 
complexity in such a manner that there exists a trade-off between the two. A model 
with low bias, high variance will fit a complex model on the data but will tend to 
generate poor forecasts due to overfitting. A model with high bias, low variance will fit 
a simple model on the data but will tend to generate poor forecasts due to underfitting. 
The trade-off between bias and variance and its relationship with model complexity is 
shown in Chart 1. The ML approach to forecasting aims to find an optimum balance 
between bias and variance of a model to simultaneously achieve low bias and low 
variance.  

In general, any application of ML algorithms would begin with a specification of 
the task at hand, for example, the prediction of 𝑦𝑦 given a predictor 𝑥𝑥. The next step is 
to train (estimate) a model with the objective to minimise a loss function (e.g. mean 
squared error or MSE) using a subsample of the data containing both 𝑦𝑦 (label) and 𝑥𝑥 
(feature) called the ‘training set’. The training involves several iterations using the 
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training set to ‘learn’ from the data. Once the model is trained, it is tested on the ‘test 
set’, a subsample of data that was not shown to the model earlier. Upon evaluation 
against the test set, the model is further fine-tuned through ‘tuning’ or adjusting various 
components of the model such as hyperparameters1, the number of times the model 
is trained on the training data, initial weights, data transformation and so on. Finally, 
the predictions are obtained using the final model selected. 

Chart 1: Bias-Variance Trade-off (Left) and Model Complexity (Right) 

 

 

II.2. Makridakis Competition and Empirical Evidence on ML-based Forecasting 

The Makridakis Competitions (or M-Competitions) are a series of open 
competitions intended to evaluate and compare the accuracy of different forecasting 
methods. Such large-scale open competitions, which include participation from 
academicians and industry practitioners alike, have proved to be a fertile ground for 
testing out various empirical questions related to forecasting. The first round of the M-
competition was organised in 1982 and the latest M4-Competition concluded in May 
2018. In the first round, 15 models were used to forecast data on 1001 time series. 
The scale has been increased to include all major statistical and ML models (including 
Neural Networks) to model and forecast 100,000 time-series variables. These 
competitions provide some interesting findings. As discussed by Makridakis and Hibon 
(2000), statistically sophisticated or complex models do not necessarily produce more 
accurate forecasts than simpler models. Further, the accuracy of the combination of 
various methods, on average, outperforms any individual method. However, the 
performance of various methods varies according to the accuracy measure being used 
and the length of the forecasting horizon. The recently concluded M4 round also found 
                                                            
1 A model hyperparameter is an external variable to the model and its value cannot be estimated from data. It 
controls the estimation process but needs to be specified a priori so that the model can generate reliable forecasts. 
This must be distinguished from a model parameter – a variable that is internal to the model and whose value can 
be estimated from the data. For instance, in an ARIMA model, the lag orders p or q are hyperparameters1 to the 
model, whereas the coefficient values of p lagged and q moving average terms are model parameters. 
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that ‘hybrid’ approaches that utilised both statistical and ML features produced the 
most accurate forecasts and the most precise prediction intervals (Makridakis et al., 
2018b). Interestingly, pure ML models did not perform well in comparison to the 
benchmark combination method used by the evaluators in this round. The major 
findings from these empirical ‘experiments’ are well-documented, discussed and 
published, informing practitioners about the latest developments in the field of 
forecasting. 

In conjunction with the results from the M-competitions, empirical literature 
(including that at central banks’ research departments) is increasingly focusing on the 
application of ML models for forecasting macroeconomic, financial and business cycle 
indicators. This class of models has also found application in business cycle recession 
and financial crises forecasting. McAdam and McNelis (2005) at the European Central 
Bank use ‘thick’ NN models to forecast inflation based on Phillips-curve formulations 
in the United States (US), Japan and the euro area. Such models, representing 
trimmed mean forecasts from several individual NN models, outperform linear models 
for many countries. Nakamura (2005) also finds that simple NN models outperform 
autoregressive time-series models at a short horizon of one to two quarters. Using the 
same data as the M3-competition, Ahmed et al. (2010) also find similar results on 
superior performance of non-linear ML models. Cook and Hall (2017) explore ‘deep 
learning’ based NN models to predict the civilian unemployment rate in the US. Each 
of the four types of NN models are not only able to beat benchmark forecasts for a 
shorter forecast horizon, but are also able to predict the turning points in the data better 
than the benchmark model. The other class of ML models, like the Random Forest 
(RF), also outperform linear models in the case of US inflation (Medeiros et al., 2019; 
Ülke et al., 2018). In a developing country setup, such as Brazil, high-dimensional 
econometric, ML models and their combinations outperform others (Garcia et al., 
2017). In the context of India, Pradhan (2011) applies NN models to forecast inflation, 
economic growth and money supply during the period 1994–2009. For a similar time 
period, Rani et al. (2017) find that NN models outperform benchmark multivariate 
econometric model for predicting inflation. On the other hand, Malhotra and Maloo 
(2017) focus on modelling food inflation and its determinants but make no attempt to 
forecast headline inflation. Given the limited number of such studies in India, there is 
ample ground for studying the application of ML-based forecasting techniques on 
Indian data. 
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III. Data, Modelling and Evaluation Strategy 

This section gives an overview of the statistical and ML methods used in our 
forecasting exercise. Along with the models, we also discuss our target variable 
(inflation) and some of its nuances. Further, we describe the overall approach adopted 
in this paper, including our model estimation, parameter/hyperparameter tuning and 
model evaluation strategy for the suite of models described in the previous section.  

III.1. Suite of Models  

In the class of statistical models, we consider the Random Walk (RW), 
autoregressive integrated moving average (ARIMA), seasonal ARIMA (SARIMA) and 
the STL-Decomposition2 methods. The RW model assumes that the best possible 
forecast of a variable is its last observed value. It is often used as a benchmark model 
for forecast evaluation and, therefore, the RW model is adopted as a benchmark 
model for our exercise. The ARIMA model is one of the most popular univariate time-
series forecasting models which combines autoregressive and moving average 
models. However, a problem with the ARIMA model is that it does not support 
seasonal data. Thus, we also test the SARIMA model which is a generalised form of 
the ARIMA method that explicitly models the seasonal component in a time series 
apart from its mean component. Lastly, the STL method forecasts a time series by 
decomposing it into its trend, seasonal and remainder components.  

Among the ML class of models, we use algorithms suitable for supervised 
learning where a target variable y is given. In contrast, unsupervised learning 
algorithms are used in cases when the target variable y is absent in the data. We 
evaluate three broad types of supervised learning algorithms. The first type of 
algorithms is based on a decision tree. In its ML application, a decision tree (also called 
a regression tree) is a non-parametric model that relies on recursive binary partitioning 
of the covariate space. Decision trees, however, are prone to the problem of 
overfitting. To overcome this, many solutions have been proposed which are usually 
based on bagging3 and boosting4 principles. The Random Forest (RF) algorithm 
based on the former and Extreme Gradient Boosting (XGBoost) based on the latter 
principle are included in our exercise.  

The second type of algorithms are based on Artificial Neural Networks (ANN), 
which allows complex non-linear relationships between the input and output variables. 
The most basic model has three distinct set of layers – one, an input layer representing 

                                                            
2 STL is an acronym for Seasonal and Trend Decomposition with Loess. 
3 Averaging predictions across models estimated with several different bootstrap samples is called ‘bagging’ and 
is used in order to improve the performance of an estimator. 
4 In the ‘boosting’ method, decision trees are built sequentially (rather than simultaneously) such that each 
subsequent tree aims to reduce the errors of the previous tree. 
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inputs of the model; second, a hidden layer representing a set of functional nodes; 
and, third, an output layer representing the output of the model. The number of layers 
and the number of nodes must be determined in advance, whereas the model 
parameters (weights) are learnt from data. Such an arrangement of layers gives way 
to powerful modelling architectures5 suitable for forecasting. Traditional ANNs, 
however, assume that all inputs to the neural network are independent of each other. 
This assumption breaks down in the case of sequential data. The Recurrent Neural 
Network (RNN) models (Rumelhart et al., 1988) developed during the application of 
neural networks to language parsing, speech recognition and translation are suitable 
when the data has a sequential structure. The RNNs are thus found to be extremely 
suitable for modelling time-series data. We consider one ANN and two RNN-based 
models. The Neural Network Autoregression (NNAR) model, based on the traditional 
ANN architecture, uses the lagged values of the time series as an input to the neural 
network. On the other hand, the RNN-based Long Short-term Memory (RNN-LSTM) 
model and the Gated Recurrent Unit (GRU) model treat input data in a sequential 
manner.  

Lastly, the third set consists of algorithms originally developed for handling 
classification tasks (where dependent variable takes a binary value). Since then, they 
have also been adopted for use in regression tasks (where the dependent variable is 
continuous). We evaluate two such algorithms, namely the k-Nearest Neighbour 
(KNN) and the support vector machines (SVM) algorithm. In the KNN method, an 
observation is modelled as its k nearest observations in the feature space. Similarly, 
in situations when the data is not linearly separable, the SVM algorithm projects the 
data into other dimension and seeks to find the best line (hyperplane) to linearly 
separate the data belonging to separate classes. A detailed explanation of all models 
is presented in Appendix II of this paper.  

III.2. Target Data 

The target variable for our forecasting exercise is inflation, described as the 
year-on-year growth rate in the CPI. More specifically, we use the all-India CPI-
combined with base year of 2012, released by the Central Statistical Office (CSO) of 
the Ministry of Statistics and Programme Implementation (MoSPI), Government of 
India. This measure of inflation is generally referred to as headline inflation. The new 
series is available from January 2011 onwards. To extend our series backwards, we 
rely on a back-casted CPI-combined6 series. In addition to the CPI-headline inflation, 
we use three components of CPI, namely the CPI-food and beverages (weight of 45.86 

                                                            
5 Architectures refer, generally, to the configuration of nodes in a model, the interconnections among those nodes, 
and the nature of the operations performed at each node. 
6 Back-casted using CPI-Industrial Workers; released with the Report of the Expert Committee to Revise and 
Strengthen the Monetary Policy Framework (RBI, 2014).  
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in CPI); CPI-fuel and light (weight of 6.84 in CPI); and, CPI-excluding food and fuel 
(weight of 47.3 in CPI) to construct measures for food, fuel and core inflation 
respectively. Data for these food, fuel and core inflation are also available from 
January 2012 onwards; however, no back-casted series is readily available for them.  

III.3. Data Pre-checks 

Appropriate specification of models – whether statistical or ML – poses many 
challenges. Standard practice while working with time-series data usually involves 
testing for unit root in the data and identifying the order of the autoregressive (AR) and 
moving average (MA) terms. If required, the data are also seasonally adjusted. The 
summary statistics for our data series are presented in Table 1. High standard 
deviation of headline inflation suggests that inflation in India is highly volatile and, 
therefore, less persistent, mainly because of high volatility in CPI-food series. Core 
inflation, on the other hand, is the least volatile (more persistent) but highly positively 
skewed. The subsample mean of the headline series is closely aligned to its 
components, although the full sample mean is a notch higher owing to high inflationary 
episodes during 2008–10. To test for stationarity, we use the Augmented Dickey–
Fuller (ADF) Test and the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) Test. Both 
tests suggest that all the four data series were non-stationary during the sample period 
(results in Table A1.1 of Appendix 1).  

Table 1: Summary Statistics 

Indicator CPI-Headline CPI-Food & 
Beverages 

CPI-Fuel  
& Light 

CPI-exc. 
Food & Fuel 

Sample Period 2002–18 2012–18 2012–18 2012–18 2012–18 
Mean 6.535 6.157 6.209 6.367 6.106 
Median 5.620 5.316 5.780 5.795 5.235 
Maximum 13.388 11.505 16.650 11.910 10.320 
Minimum 1.460 1.460 -1.690 2.490 3.830 
Std. Dev. 2.729 2.634 4.211 2.472 1.785 
Skewness 0.408 0.373 0.256 0.413 0.792 
Kurtosis 2.031 1.855 2.275 2.270 2.394 
Observations 204 84 84 84 84 
Jarque–Bera 13.633 6.536 2.758 4.254 10.067 
Probability 0.001 0.038 0.252 0.119 0.007 

 

Chart 2 shows clear shifts in mean inflation over time (it rises till 2010 and then 
falls). The recent disinflation phase, however, does not show any shift in mean but 
depicts a moderation in trend inflation (Chart 3).  
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Chart 2: CPI-Headline Inflation - 2002M01 to 2018M012 

 

Chart 3: Inflation for CPI Headline and Components - 2012M01 to 2018M012 

 

Seasonality in time-series data can manifest in three forms: deterministic, 
residual, and stochastic. Inflation calculated as the year-on-year (YoY) growth rate of 
CPI is generally assumed to contain no seasonality but the seasonal adjustment 
methods7 only control for ‘deterministic seasonality’ in the data. Interestingly, we do 
find evidence for the presence of seasonality in all four inflation series. We plot both 
ACF and PACF for headline inflation over longer lag orders and note the significant 
spikes in PACF at lag orders 12-13, 24-25 and 36-37 pointing towards serial 
correlation at seasonal frequencies (Chart 4). A plot of cross-correlation between 
various lags of headline inflation suggests strong serial correlation with seasonal lags. 
A similar pattern is observed for food, fuel and core inflation series but it is the weakest 
for fuel inflation. This could, inter alia, be due to ‘residual seasonality’ or the tendency 
of time series to display a predictable seasonal pattern despite being seasonally 
adjusted. Such issues have been observed in the case of US GDP growth (Owyang 

                                                            
7 X-11, X-12, X-13 TRAMO/SEATS are other popular statistical methods for seasonal adjustment. 
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and Shell, 2018) as well as US core consumer price inflation (Peneva and Sadee, 
2019). The presence of serial correlation at seasonal frequencies could also be due 
to ‘stochastic seasonality’ or the presence of seasonal unit roots in the data. When 
tested for the presence of a seasonal unit root, the evidence was mixed. The Canova–
Hansen Test did not find the presence of seasonal unit root, whereas the HEGY Test 
indicated the presence of seasonal unit roots (Table A1.2, Appendix 1) in the headline 
(subsample), food, fuel and core inflation. These test results are robust to seasonal 
adjustment of the underlying CPI series prior to calculation of YoY change. Therefore, 
we included the generalised SARIMA model in our forecasting exercise. Further, this 
information on the dynamics of inflation data is also crucial to make an appropriate 
choice of input variables for ML methods. To capture such dynamics of the data, we 
use autoregressive lags of the data (up to lag order 24) as input variables in the case 
of ML methods.  

Chart 4: CPI-Headline Inflation: ACF, PACF and Cross-correlation Matrix  

(i) Autocorrelation Function (ACF) Plot 

 

(iii) Cross-correlation matrix 

 

(ii) Partial Autocorrelation Function (PACF) Plot 

 
  
III.4. Estimation/Training Procedure 

Following the practice in the ML approach of prediction, we divide our sample 
into two parts: training and test sample. The choice of the train-test split is critical for 
generating reliable forecasts. The training dataset should be adequate for the model 
to ‘learn’ from the data and at the same time avoid overfitting. Thus, for each series, 
we treat the last six months of data as our test sample (Table 2)  
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Table 2: Train-Test sample for CPI-Headline and Components 

Series Full Sample Train Test 
CPI Headline Inflation 2002M01 - 2018M12 2002M01 - 2018M06 2018M07 - 2018M12 
CPI Food Inflation 2012M01 - 2018M12 2012M01 - 2018M06 2018M07 - 2018M12 
CPI Fuel Inflation 2012M01 - 2018M12 2012M01 - 2018M06 2018M07 - 2018M12 
CPI exc. Food & Fuel 
Inflation 2012M01 - 2018M12 2012M01 - 2018M06 2018M07 - 2018M12 

 
For deep learning models, input series are transformed (using natural log 

transformation) and scaled (standard min-max scaling) before they are fed into the 
model with a view to control the variance of the series. Typically, deep learning models 
are often used without differencing the series. For non-stationary time series, 
differencing is one of the most popular approaches. One important aspect of 
differencing is that while differencing for linear models is a well-suited operation based 
on formal tests, this is not the case for non-linear models, where the decision for 
differencing is ad hoc.  

All models are ‘trained’ or estimated on the training data. An additional 
consideration during training is related to finding the optimum values of parameters 
and hyperparameters for each of these models. In ML, the problem of finding the 
optimum set of hyperparameters for a learning algorithm is called tuning. For all 
models in our analysis, we use the grid-search method for hyperparameter tuning. 
Briefly, the grid-search method involves an exhaustive search for optimum values 
through a manually specified subset space which may include real and/or unbounded 
values. A grid-search method must be guided by a performance metric, which in our 
case is Akaike Information Criteria (AIC) for statistical methods and Mean Squared 
Error (MSE) in the case of ML algorithms. In addition, for each model, we also perform 
robustness checks and ensure that residuals from the final selected model in each 
case follow the assumptions of a white noise process (see Chart A1.1 in Appendix 1). 

III.5. Model Evaluation 

In order to evaluate the forecasting performance of each model, we rely on the 
following measures of prediction accuracy, namely Root Mean Square Error (RMSE), 
relative RMSE and Symmetric Mean Absolute Percentage Error (SMAPE). For 
headline and subseries inflation, model forecasts are compared for a six-month 
horizon.  

(i) 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑀𝑀 𝐸𝐸𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆 (𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸) = �1
𝑡𝑡
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑡𝑡
𝑖𝑖=1 ; 



13 
 

(ii) 𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀 𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸  =  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑜𝑜𝑜𝑜 𝑅𝑅𝑜𝑜𝑀𝑀𝑀𝑀𝑀𝑀 𝑖𝑖
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑜𝑜𝑜𝑜 𝑅𝑅𝑅𝑅 𝑅𝑅𝑜𝑜𝑀𝑀𝑀𝑀𝑀𝑀

 ; 

(iii) 𝑆𝑆𝑦𝑦𝑆𝑆𝑆𝑆𝑀𝑀𝑅𝑅𝑆𝑆𝑅𝑅𝑆𝑆 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅𝑀𝑀 𝑃𝑃𝑀𝑀𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀𝑅𝑅𝑀𝑀𝑃𝑃𝑀𝑀 𝐸𝐸𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆 (𝑆𝑆𝑀𝑀𝐴𝐴𝑃𝑃𝐸𝐸) = 100
𝑛𝑛
∑ |𝑦𝑦�𝑖𝑖− 𝑦𝑦𝑖𝑖|

(|𝑦𝑦𝑖𝑖|+ |𝑦𝑦�𝑖𝑖|)/2
𝑛𝑛
𝑖𝑖=1  

IV. Results and Discussion 

As mentioned earlier, the RW model served as a benchmark for our forecasting 
exercise. The forecast accuracy of each model over a six-month forecast horizon is 
presented in Tables 3 to 6. We select top five best performing models for each inflation 
series based on their SMAPE and present them alongside the actual inflation and RW 
forecasts. Point forecasts from all models have been provided in Appendix 1.  

IV.1. Forecasts for Headline, Food, Fuel and Core Inflation 

We begin our discussion with the forecasts for headline inflation (Table 3). All 
models barring STL are able to outperform the benchmark RW model. The best 
forecasting performance is achieved by the SARIMA model of the form (3,1,1)(2,1,1). 
It is followed by NNAR(15,1,15), deep-learning models (RNN-LSTM and GRU) and 
XGBoost in terms of forecast accuracy, all able to closely follow the actual inflation 
path (Chart 5). The parameters, in particular seasonal parameters, of the SARIMA and 
NNAR model underline important aspects of the DGP discussed in the previous 
section. Since these models are based on grid-search and minimisation of relevant 
performance metric, the selection of seasonal AR/MA lags as well as seasonal 
differencing of order 1 suggests the presence of additional information in the seasonal 
part of the data. Potential gain in forecast accuracy can be achieved by explicitly 
including this information in the model. Additionally, all ML models were also able to 
outperform the ARIMA model by a comfortable margin.  

Table 3: Model Accuracy: CPI Headline Inflation (Aggregate) 

Model RMSE Relative RMSE SMAPE 
RW Benchmark 1.81 1.00 42.69 
ARIMA 1.62 0.89 39.05 
SARIMA 0.24 0.13 6.88 
STL 1.94 1.07 44.75 
NNAR 0.41 0.22 12.20 
RNN LSTM 0.65 0.36 16.99 
GRU 0.63 0.35 16.77 
RF 0.67 0.37 18.60 
SVM 0.74 0.41 20.09 
KNN 0.72 0.40 17.80 
XGBoost 0.62 0.34 16.90 
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Chart 5: CPI Headline Inflation: Top Five Model Forecasts 

 

In the case of food inflation, the SARIMA model again emerges as the best 
performing model, closely followed by the NNAR model (Table 4). The best model 
SARIMA(2,1,2)(2,1,1), followed by NNAR(15,1,12), were able to accurately forecast 
the disinflation and subsequent deflation in food that was seen during the later part of 
2018 (Chart 6). RF and XGBoost, which are based on decision-trees, and the KNN 
model were also close and picked up the food disinflation. The RF, XGBoost and the 
KNN regression rely on rules based on ‘similarity’ of input data. The strong 
performance of these models suggests reoccurring patterns in the data that may not 
be captured in models relying on only very recent observations, such as the ARIMA 
model. Since these models are adept at handling highly correlated input data, these 
may be appropriate methods to forecast CPI-food inflation in view of the availability of 
relevant data such as arrival quantities, wholesale prices and weather indicators. 

Table 4: Model Accuracy: CPI-Food & Beverages Inflation 

Model RMSE Relative RMSE SMAPE 
RW Benchmark 3.41 1.00 146.94 
ARIMA 3.29 0.96 142.01 
SARIMA 0.46 0.13 65.50 
STL 3.75 1.10 150.51 
NNAR 1.47 0.43 117.09 
RNN LSTM 1.72 0.50 132.03 
GRU 4.16 1.22 159.67 
RF 1.38 0.40 124.87 
SVM 4.71 1.38 159.68 
KNN 1.31 0.38 123.20 
XGBoost 1.33 0.39 125.85 
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Chart 6: CPI Food and Beverages Inflation: Top Five Model Forecasts 

 

Table 5 provides information on forecast performance for fuel inflation, which 
depicts a mixed picture. Many ML models, though not all, were able to outperform the 
benchmark RW forecast and ARIMA forecast. Overall, the forecasts from XGBoost 
are found to be most precise. NNAR(10,1,7) and RNN-LSTM provided the next best 
performance in terms of the observed SMAPE. Interestingly, the NNAR model was 
able to predict the fall in fuel inflation much ahead of other models (Chart 7). In contrast 
to the headline and food inflation, the SARIMA model in the case of fuel inflation does 
not rank in the top five models. Recall that the ACF/PACF plots for fuel inflation did 
not indicate any significant spikes at seasonal frequencies, but the HEGY Test did 
indicate the presence of seasonal unit root.  

Table 5: Model Accuracy: CPI-Fuel and Light Inflation 

Model RMSE Relative RMSE SMAPE 
RW Benchmark 1.48 1.00 19.14 
ARIMA 1.45 0.98 16.09 
SARIMA 1.32 0.89 18.05 
STL 1.74 1.17 21.53 
NNAR 1.30 0.88 13.86 
RNN LSTM 1.20 0.81 13.94 
GRU 2.11 1.42 29.66 
RF 1.37 0.92 17.01 
SVM 2.04 1.37 28.32 
KNN 1.82 1.22 23.37 
XGBoost 1.08 0.73 13.20 
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Chart 7: CPI Fuel and Light Inflation: Top Five Model Forecasts 

 

Lastly, in the case of core inflation (or CPI-exc. food and fuel), RW forecasts 
are quite precise compared to many other statistical/ML methods. It may suggest a 
complex DGP underlying the data which these models were unable to learn given the 
short sample. It could also be due to high persistence in core inflation which is captured 
better by the benchmark RW model. Nevertheless, the SARIMA method was able to 
generate the best forecasts, yet again underlining its consistency (Chart 8). The 
chosen SARIMA model is of the form SARIMA (1,1,1)(0,0,1).  

Table 6: Model Accuracy: CPI-exc. Food and Fuel Inflation 

Model RMSE Relative RMSE SMAPE 
RW Benchmark 0.40 1.00 5.81 
ARIMA 0.58 1.44 8.58 
SARIMA 0.20 0.51 3.26 
STL 0.57 1.43 8.33 
NNAR 1.20 3.01 17.67 
RNN LSTM 0.33 0.82 3.70 
GRU 0.35 0.88 4.27 
RF 0.34 0.85 5.13 
SVM 0.44 1.11 6.97 
KNN 0.55 1.37 6.98 
XGBoost 0.40 1.01 5.13 

 
Chart 8: CPI Excluding Food and Fuel: Top Five Model Forecasts 
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As seen above, the models which incorporate long-term information over the 
training period provide superior forecasting performance. In the case of ML methods, 
this is achieved through selection of input variables (autoregressive lags of large order) 
as well as by construction in the case of deep learning methods. This is also true for 
the general SARIMA method. The superior forecast performance of such models, 
especially NNAR and SARIMA, also reflects the presence of the seasonality element 
in the inflation series. Deterministic seasonality usually denotes constant seasonal 
means. On the other hand, unit root seasonality captured by the SARIMA model 
represents seasonal means which evolve over time. Intuitively, this may signify that 
seasonal patterns repeat themselves but only roughly, as they may be expected to 
undergo change as the economy evolves. As the inflationary process in India has 
undergone a structural change during our training period (adoption of the flexible 
inflation targeting framework and falling fuel and more recently food prices), it could 
be one of the sources for this time -varying seasonality. 

Similarly, the forecasting exercise on core inflation also throws some important 
questions. Compared to the headline inflation forecast, the models with respect to the 
core inflation appear to feature all the typical improvements one would expect from 
this core series given its high degree of persistence. Despite this, the SARIMA model 
was found to forecast this component better. This leads to the following question: Is 
stochastic seasonality such an endemic feature of the inflationary process that it even 
influences the core inflation? We repeated the same exercise on core inflation after 
the seasonal adjustment of the underlying CPI series and found that the SARIMA 
method still outperformed other methods. This suggests the criticality of implied time-
varying seasonality for forecasting exercises.  

We now turn our attention to some more issues related to inflation forecasting 
and attempt to provide empirical evidence to this effect. The first of these relates to 
the performance of forecast combinations. The second question pertains to the 
approach of directly forecasting headline inflation compared to separately forecasting 
its components (food, fuel and core) and combine them to arrive at a final forecast for 
headline inflation. 

IV.2. Forecast Combinations 

Combining the forecasts from different ‘competing’ forecasting models is not a 
new theme in the literature. Bates and Granger (1969), a seminal work in the area of 
forecast combination, concluded that combining forecasts often leads to better 
forecasts. A forecast combination is motivated by the fact that any forecast model is 
at best only an approximation of the true data generating process (DGP), thus more 
than one model with similar predictive accuracy can be estimated for the same target 
variable. Forecasts are also state-dependent making them prone to errors related to 
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misspecification, structural breaks and uncertainty related to wider economic changes. 
In this case, any one model can never be expected to always perform well at all times. 
Empirically, combination forecasts are argued to work well providing stable 
performance over time, acting as insurance against model instability (Elliot and 
Timmerman, 2005).  

Since Bates and Granger (1969), many other approaches have been suggested 
in the literature for optimum combination of forecasts. These approaches treat forecast 
combination as a model selection and constrained parameter estimation problem, 
suggesting the use of least squares, shrinkage and Bayesian approaches to forecast 
combination. In fact, many ML models have such techniques inbuilt via bootstrapping, 
bagging and boosting methods. Some empirical studies have also found that instead 
of complicated weighing schemes that rely on estimated combination weights, simple 
equal weighted forecast combination perform well comparatively (Smith and Wallis, 
2009). Superior performance of forecast combinations compared to individual models 
is also one of the results established in the M-competitions. Using our inflation 
forecasts, we constructed simple forecast combinations based on equal weights given 
to each model. As an alternative to this simple weighing scheme, we also combined 
forecasts based on inverse RMSE weights. The accuracy measures for forecast 
combination based on top five models for each series are given in Table 7. 

Table 7: Inflation Forecast Combinations 

Series Combination Models Weights RMSE SMAPE 

CPI-headline SARIMA, NNAR, RNN-LSTM, 
GRU, XGBoost 

equal 0.38 10.7 
Inverse RMSE 0.51 13.89 

CPI-food SARIMA, NNAR, RF, KNN, 
XGBoost 

equal 0.94 100.2 
Inverse RMSE 1.26 121.3 

CPI-fuel ARIMA, NNAR, RNN-LSTM, RF, 
XGBoost 

equal 0.83 10.4 
Inverse RMSE 1.00 12.4 

CPI-exc. food  
& fuel 

SARIMA, RNN-LSTM, GRU, RF, 
XGBoost 

equal 0.20 2.7 
Inverse RMSE 0.25 3.5 

 
It is evident that the simple average forecast combination outperformed all 

individual models except in the case headline and food, where it is outperformed by 
the individual SARIMA model. We also computed simple average forecast 
combinations using various subsets of the top five models, each pointing towards 
similar results. The inverse RMSE weighted8 forecast combination was not found to 
perform better than the simple weighing scheme. However, the accuracy gains from 
forecast combination are visible in terms of overall reduction in RMSE/SMAPE. Given 
the difficulty in deciding on a single best model, simple average forecast combinations 
may be considered as a preferred method. Penalising models based on their past 

                                                            
8 RMSE over the test dataset. 
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performance, such as using weights based on past performance, may result in a loss 
in forecast accuracy.  

IV.3. Aggregate vs. Disaggregate Inflation Forecasts 

The underlying index of CPI-headline is a composite index constructed based 
on component indices. Therefore, a forecaster may choose to directly forecast 
headline inflation or separately forecast each component index and then aggregate 
these forecasts to form the headline forecast. Information from component indices can 
improve forecast accuracy provided they follow different DGPs, but it can also 
introduce more noise into the data and, therefore, reduce the accuracy. In this context, 
Chaudhuri and Bhaduri (2019) find that for Wholesale Price Index (WPI) and its 
constituents, the forecasting approach based on component indices outperforms the 
approach to directly forecast WPI inflation. We attempt to address the same question 
using the data and forecasts of CPI. Using the official weights, we combine the three 
components – food, fuel and core – to compute the headline inflation forecast for each 
type of model with the aim to assess the accuracy gains from the ‘disaggregate’ 
approach relative to the ‘aggregate’ approach for any given model.  

A comparison of RMSE/SMAPE for any given model indicates that the 
approach to directly forecasting headline inflation provides better accuracy than the 
alternative approach (Table 8). In addition, we also construct a forecast for headline 
inflation based on best performing model for respective component, namely SARIMA 
for food and core inflation, and XGBoost for fuel inflation (Chart 9). The RMSE and 
SMAPE for the resultant forecast is 0.68 and 16.68, respectively. Direct forecasts 
obtained from SARIMA, NNAR and even RF methods are better compared to 
‘disaggregate’ inflation forecast. Prima facie these results suggest that there are no 
apparent gains from forecasting each component individually and then combining 
them to compute the headline inflation forecast. 

Table 8: Forecast Accuracy: Aggregate versus Disaggregate 
 

Model Aggregate Disaggregate Aggregate Disaggregate 
 RMSE RMSE SMAPE SMAPE 
RW Forecast 1.69 1.79 40.62 42.51 
ARIMA 0.92 0.93 24.24 23.57 
SARIMA 0.29 0.64 8.40 17.29 
STL 2.00 2.06 45.83 46.78 
NNAR 0.20 1.22 5.03 31.21 
RNN LSTM 0.75 0.90 16.85 23.79 
GRU 1.66 1.81 40.08 44.31 
RF 0.67 0.83 15.33 21.95 
SVM 0.75 2.29 17.79 52.51 
KNN 0.93 0.85 22.00 19.16 
XGBoost 0.73 0.83 16.61 22.09 
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Chart 9: Component-wise Forecast for CPI Headline Inflation 

 

V. Conclusion and the Way Forward 

The availability of large volume and high-frequency data has allowed 
researchers to explore more complex models which can capture this data to improve 
forecasting accuracy. The field of machine learning offers a new paradigm with tools 
and methods to incorporate this in a policymaker’s forecasting toolkit.  

In the context of forecasting inflation for India, we review several ML methods 
and apply them to forecast headline inflation and its components. We restrict ourselves 
to only univariate time-series space and a short-term forecast horizon of six months. 
The main findings of this paper are as follows. First, we find that ML methods, 
especially neural networks and tree-based methods, are able to outperform RW and 
ARIMA models. Second, in the case of headline and food inflation, the SARIMA 
method provides overall best forecasts. In fact, SARIMA and XGBoost methods 
constantly rank amongst the best five models in terms of their accuracy scores. The 
superior performance of the SARIMA method perhaps points towards the presence of 
seasonal unit roots and residual seasonality in the data. Third, simple average-based 
forecast combinations generally outperform all individual models. Simple weight 
scheme was found to outperform the complex weight method. Notwithstanding the 
debate on optimum combination method, these results suggest that forecast 
combination is a good practice to achieve better forecasts. Fourth, in comparing the 
approaches of directly forecasting headline inflation versus separately forecasting its 
components and combining them, no meaningful gains were observed from the latter 
approach. Fifth, our analysis also suggests that accuracy gains can be achieved in 
economic forecasting by adopting techniques from the ML paradigm such as 
algorithm-based hyperparameter tuning and train-test validation strategy. 

Before we conclude, some of the caveats of our forecasting exercise, which 
may also be generally applicable to ML-based forecasting, need to be mentioned. 
First, any good forecast must be accompanied by precise confidence intervals to 
explicitly describe the uncertainty about the forecasts. Confidence intervals in case of 
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statistical methods are based on a well-defined stochastic model. On the other hand, 
generating a confidence interval is not very straightforward in the case of ML methods. 
One popular approach to generate confidence intervals around model predicted 
values relies on iterative bootstrapped sampling of prediction errors either from a 
normal distribution or historical values. Using this approach, we were able to obtain 
confidence intervals for the NNAR method; however, a word of caution is needed as 
this approach is yet to stabilise before it can be used for policy purposes. Second, the 
generation of out-of-sample forecasts may be sensitive to the sample selection for 
training/testing of the model. It may, therefore, be appropriate to generate similar 
forecasts for a different train-test data using rolling or recursive forecasting methods. 
Third, the forecasting accuracy of ML methods must also be ascertained for different 
forecast horizons of short (1-3 periods ahead), medium (4-12 periods ahead) and long 
(more than 12 periods ahead) term. Fourth, ML methods are often termed a ‘black 
box’ which does not provide any information on how the forecasts are generated. 
However, methods to derive inference and causal interpretation are an active area of 
research today, lying at the intersection of computer science and statistics. Nascent 
literature on using ‘Shapley value’ regression – a concept from game theory to derive 
statistical inference from ML methods – is gradually emerging (Joseph, 2019). Model 
agnostic methods, such as Shapley Additive Explanations (SHAP) and Local 
Interpretable Model-agnostic Explanation (LIME) are techniques being developed to 
understand the modelled relationship between input-output variables globally as well 
as locally for each predicted observation or group of observations. 
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Appendix 1: Statistical Tests and Model Forecasts 

Table A1.1: Unit Root Tests 

Series ADF Test 
(null: data is non-stationary) 

KPSS Test 
(null: data is stationary) 

In Levels stat p-value stat p-value 
CPI - headline -1.301 0.869 0.850 0.010 
CPI - food & beverages -3.118 0.117 1.600 0.010 
CPI - fuel & light -2.293 0.456 0.921 0.010 
CPI - exc. food & fuel -1.795 0.660 -6.215 0.753 
First Difference stat p-value stat p-value 
CPI - headline -6.501 0.010 0.141 0.100 
CPI - food & beverages -4.483 0.010 0.257 0.100 
CPI - fuel & light -5.038 0.010 0.148 0.100 
CPI - excl. food & fuel -4.941 0.010 0.277 0.100 

 

 

Table A1.2: Number of Seasonal Differences Based on Seasonal Unit Root Tests 

 Canova-Hansen Test HEGY Test 
Series (p < 0.05) (p < 0.05) 
CPI - headline 0 0 
CPI - headline 0 1 
CPI - food & beverages 0 1 
CPI - fuel & light 0 1 
CPI - exc. food & fuel 0 1 

 

 
Table A1.3: Model Forecasts: CPI Headline Inflation (Aggregate) 

 Jul-18 Aug-18 Sep-18 Oct-18 Nov-18 Dec-18 
Actual 4.17 3.69 3.77 3.38 2.33 2.19 

Statistical/Decomposition 
RW Forecast 4.92 4.92 4.91 4.91 4.91 4.90 
ARIMA  4.84 4.77 4.72 4.69 4.67 4.65 
SARIMA (R) 4.45 4.03 4.03 3.89 3.29 3.14 
SARIMA (Python) 4.25 3.80 3.82 3.51 2.80 2.49 
STL 4.99 5.05 4.96 4.96 5.08 5.10 

Machine Learning 
NNAR (R) 4.35 3.36 3.16 3.26 2.76 2.71 
NNAR (Python) 4.77 4.13 3.72 3.79 3.45 2.55 
RNN LSTM 4.79 4.16 3.77 3.83 3.52 2.75 
GRU 4.90 4.38 3.89 3.67 3.32 2.70 
RF 4.81 4.23 3.83 3.90 3.25 3.11 
SVM 5.11 4.09 4.04 3.95 2.99 3.37 
KNN 5.00 3.91 3.81 3.72 3.63 2.92 
XGBoost 4.58 3.91 4.01 3.70 3.27 3.19 
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Table A1.4: Model Forecasts: CPI Food Inflation 

 Jul-18 Aug-18 Sep-18 Oct-18 Nov-18 Dec-18 
Actual 1.73 0.78 1.01 -0.14 -1.69 -1.49 

Statistical/Decomposition 
RW Forecast 3.13 3.15 3.17 3.19 3.21 3.23 
ARIMA  1.16 0.83 1.77 1.53 0.24 0.13 
SARIMA (R) 1.16 0.83 1.70 1.50 0.23 0.12 
SARIMA (Python) 1.52 0.71 0.48 0.09 -0.88 -1.03 
STL 3.58 3.60 3.23 3.30 3.65 3.80 

Machine Learning 
NNAR (R) 2.55 1.64 0.92 0.65 0.81 0.74 
NNAR (Python) 3.11 2.02 1.31 1.48 0.65 -0.31 
RNN LSTM 3.07 2.15 1.56 1.70 1.03 0.24 
GRU 4.84 4.31 4.35 4.16 3.55 3.48 
RF 3.12 2.03 1.04 1.03 0.32 0.08 
SVM 4.71 4.38 4.45 4.76 4.53 4.59 
KNN 2.29 1.31 0.54 0.55 0.53 0.53 
XGBoost 3.39 1.76 0.84 0.81 0.25 -0.02 

 

Table A1.5: Model Forecasts: CPI Fuel Inflation 

 Jul-18 Aug-18 Sep-18 Oct-18 Nov-18 Dec-18 
Actual 7.96 8.55 8.63 8.55 7.24 4.54 

Statistical/Decomposition 
RW Forecast 7.16 7.10 7.04 6.98 6.92 6.86 
ARIMA  7.55 7.62 7.64 7.65 7.65 7.65 
SARIMA R 7.40 7.44 7.11 6.78 5.82 5.72 
SARIMA Python 7.05 7.04 6.93 6.58 6.08 6.57 
STL 6.87 6.85 6.93 6.98 7.33 7.48 

Machine Learning 
NNAR (R) 8.32 8.38 7.84 6.45 5.02 4.41 
NNAR (Python) 7.01 7.77 8.41 8.50 8.41 7.03 
RNN LSTM 6.85 7.76 8.41 8.48 8.40 6.86 
GRU 5.78 6.01 6.24 6.29 6.41 6.57 
RF 6.78 7.39 7.83 8.15 8.18 7.16 
SVM 6.18 6.01 6.06 6.18 6.19 5.96 
KNN 5.64 6.30 7.37 7.37 7.37 7.06 
XGBoost 6.68 7.67 8.54 8.38 8.35 6.37 
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Table A1.6: Model Forecasts: CPI Excluding Food and Fuel Inflation 
 

 Jul-18 Aug-18 Sep-18 Oct-18 Nov-18 Dec-18 
Actual 6.16 6.02 5.74 6.24 5.75 5.58 

Statistical/Decomposition 
RW Forecast 6.39 6.34 6.29 6.24 6.19 6.14 
ARIMA  6.44 6.44 6.44 6.44 6.44 6.44 
SARIMA (R) 6.35 6.19 6.07 6.06 5.91 5.72 
SARIMA (Python) 6.15 5.89 5.58 5.44 5.07 4.86 
STL 6.38 6.41 6.43 6.43 6.43 6.47 

Machine Learning 
NNAR (R) 6.85 6.86 7.19 7.07 7.13 7.25 
NNAR (Python) 7.01 7.77 8.41 8.50 8.41 7.03 
RNN LSTM 6.28 5.98 5.82 5.52 6.06 5.54 
GRU 5.88 5.80 5.65 5.47 5.68 5.51 
RF 6.24 6.25 6.13 5.83 6.27 5.79 
SVM 6.61 6.47 6.35 5.88 6.22 5.79 
KNN 6.19 5.83 5.83 5.27 6.10 6.41 
XGBoost 6.01 6.02 6.27 6.23 6.25 6.23 
 

Table A1.7: Model Forecasts: Disaggregated CPI Headline 

 
 Jul-18 Aug-18 Sep-18 Oct-18 Nov-18 Dec-18 
Actual 4.17 3.69 3.77 3.38 2.33 2.19 

Statistical/Decomposition 
RW Forecast 4.95 4.93 4.91 4.89 4.87 4.86 
ARIMA  4.82 5.03 5.32 5.27 5.01 5.03 
SARIMA (R) 4.04 3.82 4.14 4.02 3.30 3.15 
SARIMA (Python) 4.09 3.59 3.33 3.06 2.41 2.28 
STL 5.13 5.15 5.00 5.03 5.22 5.31 

Machine Learning 
NNAR (R) 4.98 4.57 4.36 4.08 4.09 4.07 
NNAR (Python) 5.22 5.13 5.15 5.28 4.85 3.66 
RNN LSTM 4.85 4.35 4.04 3.97 3.91 3.20 
GRU 5.40 5.13 5.09 4.93 4.75 4.65 
RF 4.85 4.39 3.91 3.79 3.67 3.27 
SVM 5.71 5.48 5.46 5.39 5.44 5.25 
KNN 4.36 3.79 3.51 3.25 3.63 3.76 
XGBoost 4.85 4.18 3.94 3.89 3.64 3.37 
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Chart A1.1: Performance Diagnostics: SARIMA (3,1,1)(2,1,1)12 
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Appendix 2: Forecasting Models 

1. Statistical/Decomposition-based Models 

Random Walk (RW) 

According to the RW model, the best possible forecast of a variable is its last 
observed value. A RW model with a ‘drift’ can be described as: 

𝑦𝑦𝑡𝑡+ℎ = 𝛼𝛼 +  𝑦𝑦𝑡𝑡 + ∈𝑡𝑡+ℎ 

RW (naïve) model is often used as a benchmark model for forecast evaluation 
exercises. It has also been noted in the literature that it is difficult to beat simple 
benchmark models such as the RW model (Atkeson and Ohanian, 2001). Therefore, 
we choose the RW model as a benchmark against which all other models are 
evaluated.  

ARIMA 

ARIMA or autoregressive integrated moving average model combines 
autoregressive and moving average models. It is one of the most popular forecasting 
methods for univariate time-series forecasting. It can be represented as: 

ϕ(𝐵𝐵)(1 − 𝐵𝐵𝑀𝑀)𝑦𝑦𝑡𝑡 = 𝑆𝑆 + 𝜃𝜃(𝐵𝐵)𝜀𝜀𝑡𝑡 

where, 𝜀𝜀𝑡𝑡 is a white noise process with zero mean and variance σ2, B is the backshift 
operator, and ϕ(𝑧𝑧) and 𝜃𝜃(𝑧𝑧) are polynomials of order p and q, respectively. In essence, 
this is a model of the form ARIMA (p,d,q) where p is the order of the autoregressive 
(AR) term; d is the order of integration; and q is the order of the moving average (MA) 
term9.  

Seasonal ARIMA (SARIMA10) 

The ARIMA model does not support seasonal data. It expects the input data to 
be either non-seasonal or seasonally adjusted. However, such adjustment can lead to 
loss of information leading to forecast errors, especially in the case of stochastic 
seasonality in the data. The SARIMA model is a more general form of the ARIMA 
model that explicitly supports univariate time-series data with a seasonal component. 
It adds three new hyperparameters to model the seasonal component of the data. A 

                                                            
9 Estimation of ARIMA model generally involves finding the appropriate values for its hyperparameters, i.e. p, d 
and q using a battery of diagnostics such as partial autocorrelation function (PACF) plots, unit root tests and 
autocorrelation function (ACF) plots respectively. The model parameters are estimated using techniques such as 
the least squares approach or the maximum likelihood-based estimation. 
10 SARIMA/ARIMA models are implemented both in R (forecast package; see Hyndman and Khandakar, 2008) 
and Python (pmdarima library), respectively. Final model reported is selected based on AIC and out-of-sample 
forecasting performance.  
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model of this type is of the form SARIMA(p,d,q)(P,D,Q)m where (p,d,q) is the order of 
the AR, integration and MA part of the non-seasonal component of the data, (P,D,Q) 
is the order of the AR, integration and MA part of the seasonal component and m is 
the seasonal frequency (e.g. m = 12 for monthly data; 4 for quarterly data). It can be 
expressed as follows: 

𝜙𝜙(𝐵𝐵𝑚𝑚)ϕ(B)(1 − 𝐵𝐵𝑚𝑚)𝐷𝐷(1 − 𝐵𝐵)𝑀𝑀𝑦𝑦𝑡𝑡 = 𝐶𝐶 + Φ(𝐵𝐵𝑚𝑚)𝜃𝜃(𝐵𝐵)𝜀𝜀𝑡𝑡 

where 𝜙𝜙(𝑧𝑧) and Φ(𝑧𝑧) are polynomials of orders P and Q, respectively.  

STL Decomposition 

STL or the ‘Seasonal and Trend Decomposition with Loess’ is a versatile and 
robust method for decomposing a time series into its trend, seasonal and remainder 
components. Loess is a method for estimating non-linear relationships. Originally 
developed by Cleveland et al. (1990), the STL model decomposes a time series in the 
following form: 

𝑦𝑦𝑡𝑡 = 𝐹𝐹(𝑆𝑆𝑡𝑡 ,𝑇𝑇𝑡𝑡 ,𝐸𝐸𝑡𝑡) 

where 𝑆𝑆𝑡𝑡 ,𝑇𝑇𝑡𝑡 ,𝐸𝐸𝑡𝑡 are the seasonal, trend and remainder components of the data at time 
t. The STL technique has some obvious advantages over other decomposition-based 
methods. First, it can handle any type of seasonality – daily, weekly, monthly, and so 
on. Second, it allows the seasonal component to change over time, with the rate of 
change controlled by the user. Third, the smoothness of the trend can be controlled 
by the user. Fourth, it is robust to outliers such that occasional outliers will not affect 
the trend or the seasonal component of the model. Among the disadvantages, the STL 
method can only model ‘additive’ decomposition, i.e. 𝜋𝜋𝑡𝑡 = 𝑆𝑆𝑡𝑡 + 𝑇𝑇𝑡𝑡 + 𝐸𝐸𝑡𝑡 and cannot 
handle calendar/trading day variation in the data. An STL-based decomposition of the 
CPI headline series is shown below.  

Chart A2.1: Decomposed (Additive) Series – CPI Headline Inflation
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2. ML Algorithms 

For ML algorithms, we consider a forecast approach where inflation h period-
ahead is modelled as a function of input variables measured at time t, i.e. 

𝑦𝑦𝑡𝑡+ℎ = 𝐹𝐹(𝑋𝑋𝑡𝑡) + 𝜇𝜇𝑡𝑡+ℎ 

where F(.) is a non-linear function to be approximated by the class of ML models 
described below, 𝑋𝑋𝑡𝑡 is a set of q predictors (lagged values of actual inflation) and 𝜇𝜇𝑡𝑡+ℎ 
is the forecast error.  

Decision Trees, Bagging and Boosting  

In its ML application, a decision (also called a regression) tree is a non-
parametric model that relies on recursive binary partitioning of the covariate space. 
Usually displayed in a graph which has the format of a binary decision tree with split 
nodes and terminal nodes (also called leaves), and which grows from the root node to 
the terminal nodes.  

Chart A2.2: A Regression Tree (With Two Features x1 and x2) 

 

The left panel in Chart A2.2 shows this binary partitioning of target variable 
space in the case of two features. The graph form of a binary tree with split and 
terminal nodes for the same is shown in the right panel of Chart A2.2. Regression 
trees, however, by themselves are found to be weak learners or weak predictors of 
data as they are prone to the problem of overfitting. To overcome this, many solutions 
have been proposed which are usually based on ‘bagging’ or ‘boosting’ principles. The 
idea is to have many independent tree models which jointly outperform any single tree 
model.  
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Random Forest (RF) Algorithm: Originally proposed by Breiman (2001), the RF 
algorithm reduces the variance of such regression trees and is based on bagging11 or 
the bootstrapped12 aggregation of predictions from randomly constructed trees. 
Therefore, the RF algorithm achieves this by, first, growing an ensemble of decision 
trees; second, using a randomised sample (with replacement) of input data as well as 
a random subset of predictor variables to grow n individual regression trees; third, by 
testing prediction accuracy on the out-of-bag (OOB) data, i.e. data left out from the 
initial sample; and, fourth, by averaging out all the final predictions to minimise 
prediction error. Formally, each tree in a random forest is built using the following steps 
where T represents the entire forest, t represents a single tree, for t = 1 to T: 

i. Create a bootstrap sample with replacement, S from the training set comprising 
X, Y and label these Xa, Ya; 

ii. train the tree ft on Xa, Ya; and 
iii. average the predictions to arrive at a final prediction. 

 
In a regression problem, predictions for the test instances are made by taking the 

mean of the predictions made by all trees. This can be represented as follows: 

𝑌𝑌� =  1/𝑁𝑁�𝑓𝑓𝑀𝑀(𝑋𝑋)
𝑇𝑇

𝑡𝑡=1

 

Readers can refer to Liaw and Wiener (2002) for an excellent summary of the 
workings of an RF algorithm. Random forests can deal with very large numbers of 
explanatory variables, and the proposed model is highly non-linear. 
 
Extreme Gradient Boosting (XGBoost) Algorithm: Developed by Chen and Guestrin 
(2016), XGBoost has been one of the best performing models at international 
forecasting competitions. Akin to the RF algorithm, an XGBoost model is also a 
decision tree-based technique. It is also an ensemble learning method offering a 
systematic solution to combine the predictive power of multiple learners, when relying 
on single models may not be advisable. The resultant is a single model which gives 
the aggregated output from several models. XGBoost uses boosting, where decision 
trees are built sequentially (rather than simultaneously as in the case of random 
forests) such that each subsequent tree aims to reduce the errors of the previous tree. 
Each tree learns from its predecessors and updates the residual errors. Hence, the 
tree that grows next in the sequence will learn from an updated version of the 
residuals. The objective function of XGBoost at iteration t that needs to be minimised 
is given by: 

                                                            
11 Averaging predictions across models estimated with several different bootstrap samples is called ‘bagging’ and 
is used in order to improve the performance of an estimator. 
12 Bootstrapping involves choosing (with replacement) a sample of size m from a dataset of size n to estimate the 
sampling distribution of some statistic. A variation is the ‘m out of n bootstrap’ which draws a sample of size m from 
a dataset of size n > m. 
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𝐿𝐿(𝑡𝑡) = �𝑅𝑅(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖
(𝑡𝑡−1)

𝑛𝑛

𝑖𝑖=1

+ 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)) + Ω(𝑓𝑓𝑡𝑡) 

Which can be simplified using a second-order Taylor approximation to the following 
form, where 𝑃𝑃𝑖𝑖 and ℎ𝑖𝑖 are the first and second order gradients of the loss function: 

𝐿𝐿�(𝑡𝑡) = �[𝑃𝑃𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

+
1
2
𝑃𝑃𝑖𝑖𝑓𝑓𝑡𝑡2(𝑥𝑥𝑖𝑖)] + Ω(𝑓𝑓𝑡𝑡) 

 
Being at iteration t, the next step would be to build a tree learner that achieves the 
maximum possible reduction of loss, which in turn is built iteratively through the exact 
greedy algorithm13. 
 
Inbuilt within the XGBoost algorithm is the usage of a gradient descent algorithm to 
train the model and minimise the error in prediction. Gradient descent is a first-order 
iterative optimisation algorithm for finding the minimum of a function. To find the 
local minima of a function using this approach, steps proportional to the negative of 
the gradient of the function are taken at the current point (Chart A2.3). The steps are 
in turn controlled using the learning rate which decides the speed and accuracy with 
which optimum solutions are found. 

 
Chart A2.3: Gradient Descent and Learning Rate 

 
 
Artificial Neural Network (ANN) and Deep Learning14 models 

A neural network (NN) model can be depicted as a set of ‘neurons’ which are 
organised in the form of layers. The building block of a NN is a perceptron shown in 
Chart A2.4 which can be represented as,  

                                                            
13 See https://towardsdatascience.com/xgboost-mathematics-explained-58262530904a. 
14 We extensively refer to Goodfellow et al., 2016 (See http://www.deeplearningbook.org/). 

https://towardsdatascience.com/xgboost-mathematics-explained-58262530904a
http://www.deeplearningbook.org/
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𝑦𝑦 = 𝐹𝐹{𝑥𝑥(𝑘𝑘) ∙ 𝜔𝜔(𝑘𝑘)} 

The most basic NN model has three distinct set of layers: one, an input layer 
representing inputs of the model; second, a hidden layer representing a set of 
functional nodes; and, third, an output layer representing the output of the model. The 
presence of the hidden layer lends non-linearity to the NN model, without which an NN 
model is akin to a linear regression model. 

Chart A2.4: Basic Perceptron Model 

 

In the equation above 𝑥𝑥(𝑘𝑘) is a vector of input representing the input layer and 
ω is a corresponding vector of weights. In the hidden layer, an input-weight 
combination is transformed via a non-linear function F{.}, such as a sigmoid function, 
to be passed on to the next layer. The next layer could be another hidden layer or the 
output layer. For instance, inputs into a hidden node j in are combined linearly as: 

 

𝑧𝑧𝑗𝑗 = 𝐴𝐴𝑗𝑗 + �𝜔𝜔𝑖𝑖,𝑗𝑗𝑥𝑥𝑖𝑖

4

𝑖𝑖=1

 

 
while the input can be then transformed using a non-linear sigmoid function as:  
 

𝐴𝐴(𝑧𝑧) =
1

1 + 𝑀𝑀−𝑧𝑧
 

Neural Network Autoregression (NNAR) Model  

The feed forward fully connected type of network is a type of NN architecture 
which can consist of several hidden layers of computational nodes stacked between 
an input and an output layer (Chart A2.5). Since the data only move in one direction 
through the network, the model is feed forward in nature. Likewise, the network is fully 
connected, as output of each node in a hidden layer feeds into each of the nodes in 
the following layer as an input.   
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Chart A2.5: Basic FC Network Model with One Hidden Layer 
 

 
 
Such a network can be compared to a linear autoregressive model, in the sense 

that lagged values of a time-series variable are used as an input into the model. Thus, 
some practitioners often term this model as a neural network autoregression (NNAR) 
model15. An NNAR model using last p observations as an input is comparable to an 
ARIMA(p,0,0) model but without the assumption of linear parameters. Additionally, to 
capture seasonal data, the model can be fed with lagged seasonal terms as inputs, 
i.e. values observed at the same time in the previous year. The presence of the hidden 
layer allows for non-linear mapping between input and output of the model. 

We consider a model of the form NNAR (p, P, k) where p indicates the number 
of autoregressive lags, P indicates the number of seasonal autoregressive lags and k 
indicates the number of nodes in the hidden layer. We consider only one hidden layer. 
In training the model, the weights start with random values which are then updated by 
learning from the observed data. The model is trained several times (each time a 
model is trained is called an epoch) using different randomised initial values for 
weights. The final prediction is made by averaging the predictions across all epochs.  

Recurrent Neural Network – Long Short-term Memory (RNN-LSTM) Network 

Traditional ANNs, such as the one described earlier, assume that all inputs are 
independent of each other. This assumption breaks down in the case of sequential 
data. The RNN models (Rumelhart et al., 1988) which were developed during the 
application of neural networks to language parsing, speech recognition and 
translation, are suitable when the data has a sequential structure or temporal structure. 
Since this type of model can capture the sequence in which input data is fed into them, 
they are extremely suitable for modelling time-series data. We focus on the long short-

                                                            
15 We implement the NNAR model in both R (forecast package) and Python but report only the better performing 
model. See Hyndman and Athanasopoulos (2018) for more details on the NNAR model 
(https://otexts.com/fpp2/nnetar.html). 

https://otexts.com/fpp2/nnetar.html
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term memory (LSTM) type network first suggested by Hochreiter and Schmidhuber 
(1997). It draws on the broad contextual features of the model (long-run memory) as 
well as the information provided by the recent inputs of the sequence (short-run 
memory).  

A nice explanation of the LSTM architecture is provided by Hall and Cook 
(2017), which is depicted in Chart A2.6. Each Input 𝑥𝑥𝑖𝑖 is fed into a computational node 
that also accepts inputs from the output of the preceding layer (denoted 𝐴𝐴𝑖𝑖,ℎ𝑖𝑖). The 
term 𝐴𝐴𝑖𝑖 represents the state of the network at the ith member of the sequence - the long 
running memory for the sequence, as given by the elements of the sequence to which 
the network has been exposed. The term ℎ𝑖𝑖 is the output of the layer that corresponds 
to a given element i in the sequence. This architecture can thus be understood as 
consisting of many layers and having the following properties: each layer corresponds 
to a particular input element in the sequence; each layer receives the network's long-
run understanding of the previous sequence; and each layer receives the output 
generated from the previous element in the sequence. 

Chart A2.6: Unrolled LSTM Architecture 

 

Another way to visualise an RNN-LSTM architecture would be to look at its 
‘rolled’ version (Chart A2.7). The ‘rolled’ version of a recurrent (LSTM) architecture 
represents the architecture as a ‘cell’. The arrow from the cell to itself indicates the 
feedback loop created as the output from one element of the sequence taken as input 
along with the next element in the sequence. 
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Chart A2.7: Rolled Recurrent Model 

 

The backpropagation through time (BPTT) algorithm is used to train the RNN 
model, i.e. find the optimal weights for the network. The RNN is shown one input at 
each time step to predict one output. BPTT unrolls all input time steps, with each time 
step having one input time step, one copy of the network, and one output. Prediction 
errors are then calculated and collected for each time step. The network is then rolled 
back to update the weights. We can summarise the algorithm as follows: (i) present a 
sequence of time steps of input and output pairs to the network; (ii) unroll the network, 
then calculate and accumulate errors across each time step; (iii) roll-up the network 
and update weights; (iv) repeat. However, BPTT can be computationally expensive as 
the number of time steps increases. The final architecture of the model can be summarised 
by the following set of equations: 

𝒊𝒊 = 𝝈𝝈(𝑾𝑾𝒊𝒊𝒉𝒉𝒕𝒕−𝟏𝟏 + 𝑼𝑼𝒊𝒊𝒙𝒙𝒕𝒕)  

𝒇𝒇 = 𝝈𝝈(𝑾𝑾𝒇𝒇𝒉𝒉𝒕𝒕−𝟏𝟏 + 𝑼𝑼𝒇𝒇𝒙𝒙𝒕𝒕)  

𝒐𝒐 = 𝝈𝝈(𝑾𝑾𝒐𝒐𝒉𝒉𝒕𝒕−𝟏𝟏 + 𝑼𝑼𝒐𝒐𝒙𝒙𝒕𝒕)  

𝒈𝒈 = 𝒕𝒕𝒂𝒂𝒏𝒏𝒉𝒉(𝑾𝑾𝒈𝒈𝒉𝒉𝒕𝒕−𝟏𝟏 + 𝑼𝑼𝒈𝒈𝒙𝒙𝒕𝒕)  

𝒄𝒄𝒕𝒕 =(𝒄𝒄𝒕𝒕−𝟏𝟏 ⊗𝒇𝒇)⊕(𝒈𝒈⊗𝒊𝒊)  

𝒉𝒉𝒕𝒕 = 𝐭𝐭𝐚𝐚𝐧𝐧𝐡𝐡(𝒄𝒄𝒕𝒕)⨂ 𝒐𝒐 

Here ‘i’,’f’ and ‘o’ are the input, forget and output gates. They are computed 
using the same equations but with different parameter matrices. The sigmoid function 
restricts the output of these gates between 0 and 1, so the output vector produced can 
be multiplied element-wise with another vector to define how much of the second 
vector can pass through the first one. The forget gate controls for how much of the 
previous state h(t-1) one wants to allow to pass through. The input gate defines how 
much of the newly computed state for the current input x(t) is to be let through, and the 
output gate is defined by how much of the internal state is to be exposed to the next 
layer. The internal hidden state ‘g’ is computed based on the current input x(t) and the 
previous hidden state h(t-1). Given ‘i’, ‘f’, ‘o’ and ‘g’, one can now easily calculate the 
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cell state C(t) at time t in terms of C(t-1) at time t-1 multiplied by the forget gate and the 
state ‘g’ multiplied by the input gate ‘i’. This basically represents an approach to 
combine the previous memory and the new input. Setting the forget gate to ‘o’ ignores 
the old memory and setting the input gate to ‘o’ ignores the newly computed state. 
Finally, the hidden state h(t) at time t is computed by multiplying the memory C(t) with 
the output gate.  

Gated Recurrent Unit (GRU) Network 

Over the past few years, the Gated Recurrent Unit or GRU has also emerged 
as an effective new tool for modelling sequential data (Chung et al., 2015). They have 
fewer parameters than LSTM but often deliver similar or better performance. Just like 
the LSTM, the GRU controls the flow of information, but without the use of a typical 
memory unit. Instead of using a separate cell state, the GRU uses the hidden state as 
memory. The following Chart A2.8 shows the topology of a GRU memory block (node).  

Chart A2.8: GRU Architecture 

 

It contains an update gate (z) and reset gate (r). The reset gate determines how 
to combine the new input with previous memory. On the other hand, the update gate 
defines how much of the previous memory to use in the present. Together these gates 
give the model the ability to explicitly save information over many time steps. The GRU 
is designed to adoptively reset or update its memory content. The GRU is also trained 
using BPTT. The final architecture of the model can be summarised by the following 
set of equations: 

     𝒛𝒛𝒕𝒕 = 𝝈𝝈𝒈𝒈(𝑾𝑾𝒛𝒛𝒙𝒙𝒕𝒕 + 𝑼𝑼𝒛𝒛𝒉𝒉𝒕𝒕−𝟏𝟏 + 𝒃𝒃𝒛𝒛)  

    𝒓𝒓𝒕𝒕 = 𝝈𝝈𝒈𝒈(𝑾𝑾𝒓𝒓𝒙𝒙𝒕𝒕 + 𝑼𝑼𝒓𝒓𝒉𝒉𝒕𝒕−𝟏𝟏 + 𝒃𝒃𝒓𝒓) 

𝒉𝒉𝒕𝒕 =𝒛𝒛𝒕𝒕 ∘𝒉𝒉𝒕𝒕−𝟏𝟏 +(𝟏𝟏−𝒛𝒛𝒕𝒕)∘𝝈𝝈𝒉𝒉(𝑾𝑾𝒉𝒉𝒙𝒙𝒕𝒕 +𝑼𝑼𝒉𝒉(𝒓𝒓𝒕𝒕 ∘𝒉𝒉𝒕𝒕−𝟏𝟏)+𝒃𝒃𝒉𝒉)  

Now, x(t) is input vector; h(t) is output vector; z(t) the update gate vector; r(t) the 
reset gate vector; W, U and b are parameter matrices; vector σ(g) is the original sigmoid  
function; and, σ(h) is a hyperbolic function. 
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k-Nearest Neighbours (KNN) Regression  

One of the simplest and best-known non-parametric algorithms is the k-nearest 
neighbours regression. In this method, an observation is modelled as its k nearest 
observations in the feature space, such that for a regression problem, an observation 
is assigned to the mean value of its nearest neighbours, where weights may be 
applied. 

Ban et al. (2013) describe the intuition behind the application of this approach 
to univariate time series: “consistent data-generating processes often produce 
observations of repeated patterns of behavior. Therefore, if a previous pattern can be 
identified as similar to the current behavior of the time series, the subsequent behavior 
of previous pattern can provide valuable information to predict the behavior in the 
immediate future.” In other words, this task requires ranking historic events in terms of 
‘similarity’ (these are usually referred to as fitting or learning events). Then each an 
event is assigned to a class to which a majority of these observations belong. Hence, 
KNN is completely non-parametric – no assumptions are made about the shape of the 
decision boundary. In order to determine ‘similarity’, a metric of distance is required in 
addition to a specific value of k that minimises prediction error. Various metrics have 
been used in order to measure distance in the multidimensional space, including 
Euclidian distance (Härdle and Vieu, 1992).  
 

The algorithm works as follows. It computes the Euclidean distance from the 
input data to the target data. Given a value for k and a prediction point 𝑥𝑥𝑖𝑖, KNN 
regression then identifies the k observations that are closest to 𝑥𝑥𝑖𝑖, represented by 𝑁𝑁0. 
It orders each observation in the training sample in the increasing order of distance. 
An optimal number k of nearest neighbours is found based on a validation technique 
such as cross-validation. Finally, it calculates an inverse distance weighted average 
with the k-nearest multivariate neighbours to estimate F(𝑥𝑥𝑖𝑖) using the average of all 
the responses in 𝑁𝑁0. In other words:  

𝐹𝐹�(𝑥𝑥) =  
1
𝑘𝑘
� 𝑦𝑦𝑖𝑖
𝑥𝑥𝑖𝑖∈𝑁𝑁0

 

An example of a KNN regression model fitting on training data is provided in 
Chart A2.9. The black straight line shows the true model while the blue line is the 
model fitted by KNN regression when k equals 1 (left panel) and k equals (5). A 
smoother model fit reflecting the true model is obtained as k moves close to its 
optimum value. 
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Chart A2.9: KNN Regression (left – k = 1; right – k = 5) 

 

Support Vector Machine (SVM) Regression  

In many situations, the data may not be linearly separable making it difficult to 
model via a line or a hyperplane. In addition, the exact position of this separation 
boundary might also not be known. To solve the first issue, the data can be projected 
into other dimension(s) such that the data is linearly separable given the projection is 
chosen aptly. The second issue can be solved by fixing a way to identify the best 
separation line. Intuitively, these solutions are a major part of the SVM algorithm (Chart 
A2.10). After projection of data into a new feature space, the SVM algorithm defines 
the best line as the one which has the maximum vertical distance to its closest 
observations. These closest data points are called support vectors from which the 
algorithm derives its name.  

Consider the linear case to find 𝑓𝑓(𝑥𝑥) with the minimal norm value which can be 
formulated as an optimisation problem as follows: 

  
𝑓𝑓(𝑥𝑥) = 𝛼𝛼 + 𝑥𝑥′𝛽𝛽 

𝑆𝑆𝑅𝑅𝑀𝑀. 𝐽𝐽(𝛽𝛽) =
1
2

 𝛽𝛽𝛽𝛽′ 

𝐴𝐴𝑆𝑆𝐴𝐴𝑠𝑠𝑀𝑀𝑆𝑆𝑅𝑅 𝑅𝑅𝑅𝑅 ∀𝑀𝑀: |𝑦𝑦𝑛𝑛 − (𝑥𝑥′𝑛𝑛𝛽𝛽 + 𝛼𝛼)| ≤ 𝜀𝜀 

 
where 𝑥𝑥𝑛𝑛 is a set of N feature observations with 𝑦𝑦𝑛𝑛 observed label. Clearly, no function 
exists to satisfy these constraints for all points. In order to deal with unfeasible 
constraints, slack variables 𝜏𝜏𝑛𝑛 and 𝜏𝜏𝑛𝑛∗  for each point in 𝑥𝑥𝑛𝑛. The slack variables allow 
the regression error to exist up to 𝜏𝜏𝑛𝑛 and 𝜏𝜏𝑛𝑛∗  and still satisfy required constraints. Thus, 
the problem is reduced to:  
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𝑆𝑆𝑅𝑅𝑀𝑀. 𝐽𝐽(𝛽𝛽) =
1
2

 𝛽𝛽𝛽𝛽′ + 𝐶𝐶�(𝜏𝜏𝑛𝑛 +
𝑁𝑁

𝑛𝑛=1

𝜏𝜏𝑛𝑛∗) 

𝐴𝐴𝑆𝑆𝐴𝐴𝑠𝑠𝑀𝑀𝑆𝑆𝑅𝑅 𝑅𝑅𝑅𝑅 ∀𝑀𝑀: |𝑦𝑦𝑛𝑛 − (𝑥𝑥′𝑛𝑛𝛽𝛽 + 𝛼𝛼)| ≤ 𝜀𝜀 + 𝜏𝜏𝑛𝑛 

                     ∀𝑀𝑀: |(𝑥𝑥′𝑛𝑛𝛽𝛽 + 𝛼𝛼) − 𝑦𝑦𝑛𝑛| ≤ 𝜀𝜀 + 𝜏𝜏𝑛𝑛∗  

                     ∀𝑀𝑀: 𝜏𝜏𝑛𝑛 ≥ 0; 𝜏𝜏𝑛𝑛∗ ≥ 0 
 

where C is a positive numeric value to control the penalty on observations that lie 
outside the margin and prevents overfitting determining the smoothness of 𝑓𝑓(𝑥𝑥) and 
the deviations from the margin. Likewise, the same algorithm can be extended to 
regression problems in the general case of non-linear separation boundary. 
 

The SVM is an extension of the support vector machine classifier that results 
from enlarging the feature space in a specific way, using kernels, in order to 
accommodate a non-linear boundary between the observations. A kernel is a function 
that quantifies the similarity of two observations. In its general form, it can be shown 
as follows: 

𝐹𝐹(𝑥𝑥) =  𝛽𝛽0 + �𝛼𝛼𝑖𝑖𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖)
𝑖𝑖∈𝑅𝑅

 

 
where F(.) is the SVM and K(.) is the kernel, while the model parameters have to be 
learned from the data. Some of the most popular forms of kernel used by practitioners 
are a polynomial kernel of the form 𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) = (1 + ∑ 𝑥𝑥𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖′𝑗𝑗

𝑝𝑝
𝑗𝑗=1 )d or a radial kernel of 

the form 𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) = 𝑀𝑀𝑥𝑥𝑒𝑒(−𝛾𝛾∑ (𝑥𝑥𝑖𝑖𝑗𝑗 − 𝑥𝑥𝑖𝑖′𝑗𝑗
𝑝𝑝
𝑗𝑗=1 )2). 

 

Chart A2.10: SVM and Kernel Transformation 
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