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1. Introduction

 The market risk amendment of 1988 Basel Accord in 1996, 
the advent of New Basel Accord (Basel II) in 2004, and subsequent 
revisions in the accord have brought about sea changes in risk 
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management framework adopted at banks globally in recent years. 
Regulators across the world today follow banking supervision 
systems broadly similar to the framework articulated in these 
documents. A key feature of this framework is the risk capital – the 
minimum amount of capital a bank requires to keep for its exposure 
to risk. It is argued that the risk capital acts as a cushion against 
losses, protecting depositors’ interest and increasing the resilience of 
the banking system in the event of crisis. Risk capital also makes the 
banks take risk on their own fund, thereby induces them to invest in 
prudent assets and curb their tendency to take excessive risk, which 
reduces the chances of bank runs greatly. So, the risk-based capital 
regulation has emerged as a tool to maintain stability of banking 
sector. Eventually, not only the banks but an increasing number 
of other fi nancial institutions and fi rms are also aligning their risk 
management framework in the similar line.

 Two important changes are notable in the supervisory framework 
in recent years. First, determination of minimum required capital is 
now made more risk-sensitive (also more scientifi c) than earlier. 
Second, there has been an expansion in coverage of risk events in 
banks’ portfolio. In contrast to traditional focus solely on credit risk 
(BIS, 1988), the regulatory framework has gradually covered two 
more important risk categories, viz., market risk (BIS, 1996a, 1996b) 
and operational risk (BIS, 2004).

 The Basel Accords and associated amendments/revisions provide 
broad guidelines to determine the level of minimum required capital a 
bank should maintain for all three types of fi nancial risks mentioned 
above. Under each risk category there have been a number of alternative 
approaches – starting from simple/basic to advanced in increasing level 
of sophistication. Also a distinction between basic and more advanced 
approach is that later emphasizes more on actual quantifi cation of risk.  

 In the case of ‘market risk’ the advanced approach is known as 
‘internal model approach’ (IMA), wherein risk capital is determined 
based on the new risk measure, called value-at-risk (VaR). Higher the 
value of VaR, higher the level of market risk, thereby; larger the level 
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of minimum required capital for market risk. Banks, who adopt IMA, 
subject to regulators’ approval, would quantify market risk through its 
own VaR model and minimum required capital for the quantifi ed risk 
would be determined by a rule prescribed by the concerned regulator. 

 The concept of VaR was fi rst introduced in the regulatory 
domain in 1996 (BIS, 1996) in the context of measuring market 
risk. However, post-1996 literature has given ample demonstration 
that the same concept is also applicable to much wider class of 
risk categories, including credit and operational risks. Today, VaR 
is considered as a unifi ed risk measure and a new benchmark for 
risk management. Interestingly, not only the regulators and banks 
but many private sector groups also have widely endorsed statistical-
based risk management systems, such as, VaR.

 As stated above, modern risk management practices at banks 
demand for proper   assessment of risk and VaR concept is an infl uential 
tool for the purpose. The success of capital requirement regulation 
lies on determination of appropriate level of minimum required risk 
capital, which in turns depends on accuracy of quantifi ed risk. There 
has been a plethora of approaches in measuring VaR from data, each 
having some merits over others but suffering from some inherent 
limitations. Also, each approach covers a number of alternative 
techniques which are sometimes quite heterogeneous. A challenging 
task before banks and risk managers, therefore, has been the selection 
of appropriate risk model from a wide and heterogeneous set of 
potential alternatives. Ironically, theory does not help much in direct 
identifi cation of the best suitable risk model for a portfolio. 

 In practice, selection of risk model for a portfolio has to be 
based on empirical fi ndings. Against this backdrop, this paper makes 
an empirical attempt to select VaR model for government security 
market in India. The paper focuses more on demonstrating the steps 
involved in such a task with the help of select bonds. In reality, actual 
portfolio differs (say, in terms of composition) across investors/
banks and the strategy demonstrated here can be easily replicated for 
any specifi c portfolio. The rest of the paper is organized as follows. 



4 RESERVE BANK OF INDIA OCCASIONAL PAPERS

Section 2 presents the VaR concept and discusses some related issues.  
Section 3 summarises a number of techniques to estimate VaR using 
historical returns for a portfolio and Section 4 discusses criteria to 
evaluate alternative VaR models. Empirical results for select bonds 
are presented in Section 5. Finally, Section 6 presents the concluding 
remarks of the paper.

Section II

Value-at-Risk – The Concept, Usage and Relevant Issues

2.1 Defi ning Value-at-Risk

 The VaR is a number indicating the maximum amount of loss, 
with certain specifi ed confi dence level, a fi nancial position may 
incur due to some risk events/factors, say, market swings (market 
risk) during a given future time horizon (holding period). If the 
value of a portfolio today is W, one can always argue that the entire 
value may be wiped out at some crisis phase so the maximum 
possible loss would be the today’s portfolio value itself. However, 
VaR does not refer to this trivial upper bound of the loss. The VaR 
concept is defi ned in a probabilistic framework, making it possible 
to determine a non-trivial upper bound (lower than trivial level) for 
loss at a specifi ed probability. Denoting L to represent loss of the 
portfolio over a specifi ed time horizon, the VaR for the portfolio, say 
V*, associated with a given probability, say p, 0 < p <1, is given by 
Prob[Loss > V*] = p, or equivalently, Prob[Loss < V*] = (1-p), where 
Prob[.] represents the probability measure. Usually, the terms ‘VaR 
for probability p’ refer to the defi nitional identity Prob[Loss > V*] 
= p, and the terms ‘VaR for 100*(1-p) per cent confi dence level’ are 
used to refer to the identity Prob[Loss < V*] = (1-p).

 The VaR can be defi ned in terms of a threshold for change in value 
of the portfolio also. In order to illustrate this point, let Wt denotes the 
total value of underlying assets corresponding to a fi nancial position 
at time instance t, and the change in value of the position from time 
t to t+h is ∆Wt(h) = (Wt+h - Wt). At time point t, Wt+h is not known, 
so ∆Wt(k) is also unknown and can be considered a random variable. 
So, the value-at-risk V* would satisfy the identity Prob[∆Wt(h) 
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< -V*] = p, or equivalently, as earlier, the identity can be expressed 
as Prob[∆Wt(h) > -V*] = (1-p).

 It is important to note that any VaR number has two parameters, 
viz., holding period (i.e. time horizon) and probability/confi dence 
level. For a given portfolio, VaR number changes with these two 
parameters - while VaR decreases (increases) with the rise (fall) of 
probability level1, it changes in the same direction with changes in 
holding period. 

2.2  Short and Long Financial Positions, and VaR

 The holder of a short fi nancial position suffers a loss when the 
prices of underlying assets rise, and concentrates on upper-tail of 
the distribution while calculating her VaR (Tsay, 2002, pp. 258). 
Similarly, the holder of a long fi nancial position would model the 
lower-tail of return distribution as a negative return on underlying 
assets makes her suffer a loss.  

2.3 Usage of VaR

 Despite being a single number for a portfolio, VaR has several 
usages. First, VaR itself is a risk measure. Given probability level 
‘p’ and holding period, larger VaR number would indicate greater 
risk in a portfolio. Thus, VaR has ability to rank portfolios in order 
of risk. The second, it gives a numerical maximal loss (probabilistic) 
for a portfolio. Unlike other common risk measures, this is an 
additional advantage in measuring risk through VaR concept. Third, 
VaR number is useful to determine the regulatory required capital for 
banks exposure to risk.

 Apart from the general usages of VaR concept, it is also 
worthwhile to note a few points on its applicability to various risk 
categories. Though there has been criticism against it as being not a 
coherent risk measure and lacking some desirable properties (see for 
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instance, Artzner, et al., 1999), it is a widely accepted risk measure 
today. Though VaR was originally endorsed as a tool to measure 
market risk, it provides a unifi ed framework to deal with other risks, 
such as, credit risk, operation risk. As seen in the defi nition, the 
essence of VaR is that it is a percentile of loss/return distribution 
for a portfolio. So long as one has data to approximate/fi t the loss 
distribution, VaR being a characteristic of such distribution, can be 
estimated from the fi tted distribution. 

2.4 Choice of Probability Level and Holding Period

 The choice of ‘probability/confi dence level’ and ‘holding period’ 
would depend on the purpose of estimating the VaR measure. It is now 
a common practice, as also prescribed by the regulators, to compute 
VaR for probability level 0.01, i.e. 99% confi dence level. In addition, 
researchers sometimes consider assessment of risk for select other 
probability levels, such as, for probability 0.05.  

 A useful guideline for deciding ‘holding period’, is the liquidation 
period – the time required to liquidate a portfolio2. An alternative 
view is that the holding period would represent the ‘period over 
which the portfolio remains relatively stable’. Holding period may 
also relates to the time required to hedge the risk. Notably, a rise in 
holding period will increase the VaR number. One may also get same 
outcome by reducing probability level (i.e. increasing confi dence 
level) adequately (instead of changing holding period). In practice, 
regulators maintain uniformity in fi xing probability level at p=0.01 
(equivalently, 99% confi dence level). Thus, holding period has to be 
decided based on some of the consideration stated above. It may be 
noted that VaR for market risk may have much shorter holding period 
as compared to say VaR for credit risk. Basel Accords suggests 10-
day holding period for market risk, though country regulators may 
prescribe higher holding period. In case of credit risk, duration of 
holding period is generally one-year.
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2.5 VaR Expressed in Percentage and Other Forms

 As seen, VaR is defi ned in terms of the change/loss in value 
of a portfolio. In practice, distribution of return (either percentage 
change or continuously-compounded/log-difference3) of the fi nancial 
position may actually be modeled and thus, VaR may be estimated 
based on percentile of the underlying return distribution. Sometimes 
percentiles of return distribution are termed as ‘relative VaR’ (see for 
instance, Wong, et al., 2003). On this perception, the VaR for change 
in value may be termed as ‘absolute/nominal VaR’. 

 Thus, the percentile ξp corresponding to left-tail probability p of 
distribution of k-period percentage change itself is the relative VaR 
(expressed in per cent) with specifi ed parameters and corresponding  
(absolute) VaR would be [(ξp/100)Wt]. Alternatively, if ξp represents 
the p-percentile for log-return (in per cent), then (absolute) VaR can be 
expressed as [{exp(ξp/100)-1}Wt]. In our paper, unless otherwise stated, 
we use the term VaR to indicate ‘relative VaR’ (expressed in per cent).

2.6  The h-period VaR from 1-period VaR

 Another point to be noted relates to the estimation of multi-
period VaR (i.e. VaR corresponding to multi-period ‘time horizon’, 
say h-day). In practice, given probability level ‘p’, 0<p<1, 1-period 
VaR are fi rst directly computed using 1-period return (say, daily 
return), and then they are converted to multi-period VaR using some 
approximation rule under certain assumptions about the market/
portfolio. The widely used approximation relation between, say 
h-day VaR and 1-day VaR is given by

 where VaR(h,p) denotes a VaR with probability level ‘p’ and 
h-day holding period.  

 It is important to note that above relationship between h-period 
VaR and 1-period VaR is not correct in general conditions. However, 
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for simplicity, this has been widely used in practice and regulators 
across the world has also subscribed to such approximation. Indeed, 
as per the regulators’ guidelines, banks adopting IMA for market risk 
require to compute 1-day VaR using daily returns and the validation 
of risk-model depends upon how accurately the models estimate    
1-day VaR. However, minimum required capital is determined using 
multi-period VaR, say 10-day VaR numbers, which are generated 
from the 1-day VaR values.

Section III

Measurement of VaR – Select Techniques

 The central to any VaR measurement exercise has been the 
estimation of suitable percentile of change in value or return of the 
portfolio. Following the earlier discussion, we focus here in estimating 
1-period VaR (e.g., 1-day VaR using daily returns). Also, we shall be 
focusing only on estimating VaR directly from portfolio-level returns. 
As well known, a portfolio usually consists of several securities and 
fi nancial instruments/assests, and returns on each component of the 
portfolio would follow certain probability distribution. Portfolio 
value is the weighted sum of all components, changes in which can 
be assessed by studying the multivariate probability distribution 
considering returns on all components of the portfolio. In our study, 
such a strategy has not been followed. Instead, our analysis, as quite 
common in the literature, relies on historical portfolio-level returns 
and VaR estimation essentially requires to study the underlying 
univariate distribution.

3.1  Estimating VaR Under Normality of Unconditional Return 
Distribution

 The normality assumption to portfolio return distribution 
simplifi es the task of VaR estimation greatly. A normal distribution is 
fully characterized by fi rst two moments, viz., mean (µ) and standard 
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deviation (σ), and the percentile with left-tail probability p, 0<p<1, 
is given by zp = [ µ + τp σ ], where τp denotes the corresponding 
percentile for standard normal distribution. By defi nition, VaR for 
given probability p is the absolute value of zp, denoted by |zp|. Thus, 
if  and  denote the estimate of µ and σ, respectively, based on 
a sample of portfolio returns upto time t, the estimated VaR (with 
probability p, 0<p<1) for the next time point, i.e. time point (t+1), is 
given by 

  ..... (2)                                                                                   

where the meaning of |.| remains same.

3.2 Non-Normality of Unconditional Return Distribution - 
Estimating VaR 

 The biggest practical problem of measuring VaR, however, is 
that the observed returns hardly follow normal distribution - the 
fi nancial market returns are known to exhibit ‘volatility clustering 
phenomena’ and follow ‘fat-tailed’ (leptokurtic) distribution with 
possibly substantial asymmetry.  The deviation from normality 
intensifi es the complexity in modelling return  distribution, hence 
estimation of required percentiles and VaR numbers. 

 A simple approach to handle non-normality has been to model 
return distribution non-parametrically, such as, employing the 
historical simulation approach. The non-parametric techniques do 
not assume any specifi c form of the return distribution and are quite 
robust over alternative distributional forms. Besides, these techniques 
are easy to understand and pose no diffi culty to implement. But 
inherent limitations of a non-parametric approach is well known. 

 The conventional parametric approaches to deal with non-
normality can be classifi ed under four broad categories; (i) conditional 
heteroscedastic models - modeling conditional return distribution 
through RiskMetric approach, ARCH/GARCH or more advanced 
forms of such models; (ii) fi tting suitable non-normal or mixture 
distribution for unconditional distribution; and (iii) application of 
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extreme value theory (EVT) - modeling either the distribution of 
extreme return or only the tails of return distribution. 

3.2.1 Non-Parametric Approach - Historical Simulation 

 The non-parametric approach, such as, historical simulation (HS), 
possess some specifi c advantages over the normal method, as it is 
not model based, although it is a statistical measure of potential loss. 
The main benefi t is that it can cope with all portfolios that are either 
linear or non-linear. The method does not assume any specifi c form 
of the distribution of price change/return. The method captures the 
characteristics of the price change distribution of the portfolio, as it 
estimates VaR based on the distribution actually observed. But one 
has to be careful in selecting past data.  If the past data do not contain 
highly volatile periods, then HS method would not be able to capture 
the same. Hence, HS should be applied when one has very large data 
points to take into account all possible cyclical events. HS method 
takes a portfolio at a point of time and then revalues the same using 
the historical price series. Daily returns, calculated based on the price 
series, are then sorted in an ascending order and fi nd out the required 
data point at desired percentiles. Linear interpolation can be used to 
estimate required percentile if it falls in between two data points. 

 Another variant of HS method is a hybrid approach put forward 
by Boudhoukh, et al. (1997), that takes into account the exponentially 
weighing approach in HS for estimating the percentiles of the return 
directly. As described by Boudhoukh et al. (1997, pp. 3),  “the 
approach starts with ordering the returns over the observation period 
just like the HS approach. While the HS approach attributes equal 
weights to each observation in building the conditional empirical 
distribution, the hybrid approach attributes exponentially declining 
weights to historical returns”. The process is simplifi ed as follows:

� Calculate the return series of past price data of the security or the 
portfolio. 

� Fix a value δ from the interval (0,1). Usually δ is fi xed at =0.98. 

� To each most recent k returns: R(t), R(t-1), …R(t-k+1) assign a 
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weight proportional to 1, δ, δ2, …., δk-1, respectively. In order to make 
total weights sum to 1, the weights for R(t), R(t-1), …..,R(t-k+1) 
would be , 
respectively4. 

� Sort the returns in ascending order.

� In order to obtain VaR of the portfolio for probability ‘p’, 0<p<1, 
start from the lowest return and keep accumulating the weights 
until ‘p’ is reached. The return corresponding with accumulated 
weight ‘p’ relates to VaR. Linear interpolation may be used, if 
necessary, to attain exact ‘p’ of the distribution. 

3.2.2 Use of Conditional Heteroscedasticity Models

 The ‘volatility clustering phenomenon’ implies that the 
conditional variance of return is not constant over time (i.e. 
heteroscedastic). This phenomenon is a potential source of observed 
fat-tail of unconditional return distributions. Interestingly, theory also 
proves that unconditional distribution of return will possess fat-tails 
even when returns follow normal distribution conditionally. These 
results give rise to the idea of modeling conditional heteroscedasticity 
of returns. Under normality of such conditional distributions, 
expression for VaR is |µt + σt τp|, where µt and σt are time-varying/
conditional mean and standard deviation of return, respectively; ‘p’is 
the probability level attached with VaR number; τp is the tabulated 
value for standard normal distribution corresponding with the lower-
tail probability ‘p’.

 Using historical returns on a portfolio, one can estimate 
conditional mean and standard deviation at different time points. 
Accordingly estimated VaR numbers would be

 .....(3)
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where   and , respectively, denote estimated conditional mean 

and variance for time point t+1 (using information upto time t)5.

 There exist several alternative models to estimate conditional 
mean and variance. The simplest form of conditional heteroscedastic 
model is the one like exponentially weighted moving average as used 
in RiskMetrics (J.P. Morgan/Reuters, 1996). This popular technique 
in effect models conditional variance as a weighted average of past 
variances and past returns, where exponential weighting scheme for 
past returns is used as follows;

 ....(4)

where  and rt denote conditional variance and return at time t, 
respectively;  denotes the variance at origin (i.e. time t=0); and the 
parameter λ, known as decay factor, satisfi es 0 < λ <1.

 For daily data, the value of the decay parameter in the 
RiskMetric approach is generally fi xed at λ=0.94 (van den Goorberg 
and Vlaar, 1999). The accuracy in VaR estimates may also improve 
for alternative values for λ, such as, 0.96 or 0.98 (see for instance, 
Samanta and Nath, 2004). 

 More advanced models like ARCH, GARCH and so forth 
(Engle 1982; Bollerslev, 1986; Wong et al., 2003) can also be used 
for capturing conditional heteroscedasticity. Though conceptually 
appealing, the performance of the conditional heteroscedastic models 
in estimating VaR, however,  is mixed. In a recent empirical study, 
Wong et al., (2003) found that the approaches, like, ARCH/GARCH, 
do not necessarily improve the quality of VaR estimates.

3.2.3 Fitting Non-Normal Distribution for Returns

 Alternatively, one can simply fi t the parametric form of a 
suitable non-normal distribution to the observed returns. The class of 
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distributional forms considered would be quite wide including, say, 
hyperbolic distribution, t-distribution, mixture of two or more normal 
distributions, Laplace distribution or so forth, (van den Goorbergh 
and Vlaar, 1999; Bauer 2000; Linden, 2001).

 In our study we consider symmetric hyperbolic distribution as an 
alternative fat-tailed distribution for returns6. A d-dimensional random 
variable ‘r’ is said to follow a symmetric hyperbolic distribution if it 
has density function as below;

where, K
ν
 is the modifi ed Bessel function of the third kind, the 

parameters δ and ∆ are for multivariate scales, µ for location and ζ 
mainly changes the tails.

 For the presence of Bessel functions in above density function, 
closed form expression for maximum likelihood estimators are not 
possible. Bauer (2000) suggests an approach to have maximum 
likelihood estimators7. Once estimates of the parameters become 
available, one can estimate the required percentile of the distribution 
following numerical iteration method.

3.2.4 Methods under Extreme Value Theory – Use of Tail-Index

 The fat tails of unconditional return distribution can also be 
handled through extreme value theory using, say, tail-index, which 
measures the amount of tail fatness. One can therefore, estimate the 
tail-index and measure VaR based on the underlying distribution. The 
basic premise of this idea stems from the result that the tails of every 
fat-tailed distribution converge to the tails of Pareto distribution. In a 
simple case, upper tail of such a distribution can be modeled as,
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Prob[X > x] ≈ Cα |x|–α (i.e. Prob[X ≤ x] ≈ 1 - Cα |x|-α); x>C ….. (6)                                                                                                                              

Where, C is a threshold above which the Pareto law holds; |x| denotes 
the absolute value of x and the parameter α is the tail-index. 

Similarly, lower tail of a fat-tailed distribution can be modeled as

Prob[X > x] ≈1 - Cα  x–α    (i.e. Prob[X ≤ x] ≈ Cα x-α);   x < C                 ….. (7)  

Where, C is a threshold below which the Pareto law holds, and the 
parameter α, called as tail-index, measures the tail-fatness. 

 In practice, observations in upper tail of the return distribution 
are generally positive and those in lower tail are negative. The holder 
of a short fi nancial position suffers a loss in the event of a rise in 
values of underlying assets and therefore, concentrates on upper-tail 
of the distribution (i.e. Eqn. 6) for calculating VaR (Tsay, 2002, pp. 
258). Similarly, the holder of a long fi nancial position would model 
the lower-tail of the underlying distribution (i.e. use Eqn. 7) as a fall 
in asset values makes her suffer a loss.  

 From Eqns.(6) and (7), it is clear that the estimation of VaR is 
crucially dependent on the estimation of tail-index α. There are several 
methods of estimating tail-index, such as, (i) Hill’s (1975) estimator 
and (ii) the estimator under ordinary least square (OLS) framework 
suggested by van den Goorbergh and Vlaar (1999). In this study, only 
the widely used Hill’s estimator of tail-index is considered. 

Section IV

Selecting VaR Model – Evaluation Criteria

 The accuracy of VaR estimates obtained from a VaR model 
can be assessed under several frameworks, such as, (i) regulators’ 
backtesting (henceforth simply called as backtesting); (ii) Kupiec’s 
test; (iii) loss-function based evaluation criteria. Under each 
framework, there would be several techniques and what follows is 
the summary of some of the widely used techniques. 
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4.1 Backtesting

 As recommended by Basel Committee, central banks do not 
specify any VaR model to the banks. Rather under the advanced 
‘internal model approach’, banks are allowed to adopt their own 
VaR model. There is an interesting issue here. As known, VaR is 
being used for determining minimum required capital – larger the 
value of VaR, larger is the capital charge. Since larger capital charge 
may affect profi tability adversely, banks have an incentive to adopt 
a model that produces lower VaR estimate. In order to eliminate 
such inherent inertia of banks, Basel Committee has set out certain 
requirements on VaR models used by banks to ensure their reliability 
(Basel Committee, 1996a,b) as follows;

(i)  1-day and 10-day VaRs must be estimated based on the daily 
data of at least one year 

(ii)  Capital charge is equal to three times the 60-day moving average 
of 1% 10-day VaRs, or 1% 10-day VaR on the current day, which 
ever is higher. The multiplying factor (here 3) is known as 
‘capital multiplier’.

 Further, Basel Committee (1996b) provides following Backtesting 
criteria for an internal VaR model (see van den Goorbergh and Vlaar, 
1999; Wong et al., 2003, among others)

(i)  One-day VaRs are compared with actual one-day trading 
outcomes.

(ii)  One-day VaRs are required to be correct on 99% of backtesting 
days. There should be at least 250 days (around one year) for 
backtesting.

(iii)  A VaR model fails in Backtesting when it provides 5% or more 
incorrect VaRs.

 If a bank provides a VaR model that fails in backtesting, it will 
have its capital multiplier adjusted upward, thus increasing the amount 
of capital charges. For carrying out the Backtesting of a VaR model, 
realized day-to-day returns of the portfolio are compared to the VaR of 
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the portfolio. The number of days, when actual portfolio loss is higher 
than VaR estimate, provides an idea about the accuracy of the VaR 
model. For a good 99% VaR model, this number would approximately 
be equal to the 1 per cent (i.e. 100 times of VaR probability) of back-
testing days. If the number of VaR violations or failures (i.e. number of 
days when observed loss exceeds VaR estimate) is too high, a penalty is 
imposed by raising the multiplying factor (which is at least 3), resulting 
in an extra capital charge. The penalty directives provided by the Basel 
Committee for 250 back-testing trading days is as follows; multiplying 
factor remains at minimum (i.e. 3) for number of violations up to 4, 
increases to 3.4 for 5 violations, 3.5 for 6 violations, 3.65 for violations 
7, 3.75 for violations 8, 3.85 for violations 9, and reaches at 4.00 for 
violations above 9 in which case the bank is likely to be obliged to 
revise its internal model for risk management (van den Goorbergh and 
Vlaar, 1999).  

4.2 Statistical Tests of VaR Accuracy

 The accuracy of a VaR model can also be assessed statistically by 
applying Kupiec’s (1995) test (see, for example, van den Goorbergh 
and Vlaar, 1999 for an application of the technique). The idea behind 
this test is that frequency of VaR- violation should be statistically 
consistent with the probability level for which VaR is estimated. 
Kupiec (1995) proposed to use a likelihood ratio statistics for testing 
the said hypothesis. 

 If z denotes the number of times the portfolio loss is worse than the 
VaR estimate in the sample (of size T, say) then z follows a Binomial 
distribution with parameters (T, p), where p is the probability level 
of VaR. Ideally, more the z/T closes to p, more accurate the estimated 
VaR is. Thus the null hypothesis z/T = p may be tested against the 
alternative hypothesis z/T ≠ p. The likelihood ratio (LR) statistic for 
testing the null hypothesis against the alternative hypothesis is

                 ….. (8)
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 Under the null hypothesis, LR-statistic follows a χ2-distribution 
with 1-degree of freedom.

 The VaR estimates are also interval forecasts, which thus, can 
be evaluated conditionally or unconditionally. While the conditional 
evaluation considers information available at each time point, the 
unconditional assessment is made without reference to it. The test 
proposed by Kupiec provides only an unconditional assessment as it 
simply counts violations over the entire backtesting period (Lopez, 
1998). In the presence of time-varying volatility, the conditional 
accuracy of VaR estimates assumes importance. Any interval forecast 
ignoring such volatility dynamics may have correct unconditional 
coverage but at any given time, may have incorrect conditional 
coverage. In such cases, the Kupiec’s test has limited use as it may 
classify inaccurate VaR as acceptably accurate.

 A three-step testing procedure developed by Christoffersen (1998) 
involves a test for correct unconditional coverage (as Kupiec’s test), 
a test for ‘independence’, and a test for correct ‘conditional coverage’ 
(Christoffersen, 1998; Berkowitz and O’Brien, 2002; Sarma, et al., 
2003). All these tests use Likelihood-Ratio (LR) statistics. 

4.3 Evaluating VaR Models Using Penalty/Loss-Function

 Tests mentioned above assess the frequency of VaR violations, 
either conditionally or unconditionally, during the backtesting trading 
days. These tests, however, do not look at the severity/magnitude 
of additional loss (i.e. loss in excess of estimated VaR) at the time 
of VaR violations.  However, a portfolio manager may prefer the 
case of more frequent but little additional loss than the case of less 
frequent but huge additional loss. The underlying VaR model in the 
former case may fail in backtesting but still the total amount of loss 
(after adjusting for penalty on multiplying factor, if any) during the 
backtesting trading days may be less than that in later case. So long 
as this condition persists with a VaR model, a portfolio manager, 
particularly non-banks who are not required to comply with any 
regulatory requirement, may prefer to accept the VaR model even 
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if it fails in backtesting. This means that the objective function of a 
portfolio manager is not necessarily be the same as that provided by 
the backtesting. Each manager may set his own objective function and 
try to optimize that while managing market risk. But, loss-functions 
of individual portfolio managers are not available in public domain 
and thus, it would be impossible to select a VaR model appropriate 
for all managers. However, discussion on a systematic VaR selection 
framework by considering a few specifi c forms of loss-function 
would provide insight into the issue so as to help individual manager 
to select a VaR model on the basis of his own loss-function. On this 
perception, it would be interesting to illustrate the VaR selection 
framework with the help of some specifi c forms of loss-function. 

 The idea of using loss-function for selecting VaR model, perhaps, 
is proposed fi rst by Lopez (1998). He shows that the binomial 
distribution-based test is actually minimizing a typical loss-function 
– gives score 1 for a VaR violation and a score 0 otherwise. In other 
words, the implied loss-function in backtesting would be an indicator 
function It which assumes a value 1 at time t if the loss at t exceeds 
corresponding VaR estimate and assumes a value zero otherwise. 
However, it is hard to imagine an economic agent who has such a utility 
function: one which is neutral to all times with no VaR violation and 
abruptly shifts to score of 1 in the slightest failure and penalizes all 
failures equally (Sarma, et al., 2003). Lopez (1998) also considers a 
more generalised loss-function which can incorporate the regulatory 
concerns expressed in the multiplying factor and thus is analogous 
to the adjustment schedule for the multiplying factor for determining 
required capital.  But, he himself observed that, like the simple 
binomial distribution-based loss-function, this loss-function is also 
based on only the number of violations in backtesting observations – 
with paying no attention to another concern, the magnitudes of loss 
at the time of failures. In order to handle this situation, Lopez (1998) 
also proposes a different loss-function addressing the magnitude of 
violation as follows;

 ..... (9)
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where Lt denotes a score at time t, Losst  is the magnitude/amount of 
loss at time t and VaRt|t-1 is the estimated value-at-risk made for time 
t made at time (t-1). 

 The overall score (i.e. value of the loss-function) is the 
summation of all scores (Lt) over all back testing days. A VaR 
model which gives minimum overall score is preferred over other 
competing models.

 In the spirit of Lopez (1998), Sarma et al. (2003) consider two 
loss-functions, viz., regulatory loss function and the fi rm’s loss 
function, which assign scores on t-th backtesting day as follows;

Regulatory Loss Function

 ..... (10)

Firm’s Loss Function

 ..... (11)

where α represents the opportunity cost of capital and meaning of 
other symbols and variables are as above.

Section V

Empirical Results

5.1 Data

 Data availability in government securities to carry out value-at-
risk analy sis is quite diffi cult. This is simply because the government 
securities market is still not vibrant, deep and liquid enough. 
Securities keep on changing their tradability making it diffi cult to 
get time series trade data on a particular security for more than, say, 
three years. One can easily verify that though there are more than 
ninety outstanding government securities, less than ten securities are 
traded for good volume or number of trade. Among these, of course, 
all are not regularly traded. We could get data for three years from 
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August 2005 to July 2008. Effective working days during this three 
year period was 747 days while the most regularly traded security, 
8.07% GS 2017, during this period was traded for 685 days followed 
by 7.37% GS 2014 for 608 days. Even after having a Primary 
Dealers system in place, who are specifi cally treated as market 
maker, representative quotes or data on that in several government 
securities are not available. In such a scenario, the analysis was kept 
limited to the trade data of above mentioned two securities. In case 
any of these securities is not traded in a particular day, the price 
has been taken from what is disseminated by Fixed Income Money 
Market and Derivatives Association of India (FIMMDA) on a daily 
basis.

5.2 Return Series

 For each chosen bond, we consider the continuously compounded 
daily returns computed as follows;

Rt =  loge(Pt) – loge(Pt-1)  ….. (12)

Where Pt and Rt denote the price/value and return in t-th day.

 Using the price data for 747 days, we have returns on each 
bond for 746 days. The daily returns, plotted in Chart 1, clearly 
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exhibits volatility clustering indicating the fat-tails of unconditional 
distribution of returns. Observed probability distribution for each 
return series also appears to be non-normal (Chart 2).

 In order to formally examine whether returns follow normal 
distribution, we employed Jarque-Bera (1987) and two other related 
Chi-Square tests. The Jarque-Bera (1987)8 test statistics is given by 
Q = n[ (b1)

2/6 + (b2)
2/24], where b1  and  b2 are sample estimates 

of measure of skewness β1 and excess-kurtosis β2, respectively and 
n is the number of observation used to derive the said estimates. 
Under the hypothesis of normality of return distribution, Q is 
asymptotically a χ2 variable with 2 degrees of freedom. Also, under 
normality, each of b1 and b2 is asymptotically normally distributed 
with mean zero and respective variances 6/n and 24/n implying that 
each of [n (b1)

2/6] and [n (b2)
2/24] is asymptotically χ2 variable with 

1 degree of freedom. The test statistics stated above are used to 
examine normality. 

 Results of normality tests are presented in Table 1. As can be 
seen from this table, the Jarque-Bera test statistics is signifi cant at 
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1% level of signifi cance indicating that none of the return series 
could be considered to be normally distributed. The Chi-square 
tests for skewness or excess-kurtosis alone also support the fi nding. 
Results on these tests suggest that the underlying return distributions 
have signifi cant excess-kurtosis indicating presence of fat-tails in the 
distributions and are skewed, though the degree of asymmetry in the 
case of the bond 7.37% GS 2014 appears to be mild9.

5.3 VaR Estimates from Alternative Techniques

 The identifi ed non-normality of the underlying return 
distributions poses a great diffi culty in estimating value-at-risk. As 
discussed earlier, there have been a plethora of techniques to handle 
non-normality but hardly any theory can directly identify the best 
VaR technique for a given portfolio. Thus selecting VaR model is a 
decision-making problem that has to be addressed empirically.  Our 
strategy in this regard is that estimate VaR using a set of alternative 
techniques/models and evaluate each competing model based on 
suitable criteria.

 In this study, 'normal method' is taken as the benchmark VaR 
estimation technique. The list of alternative approaches to handle 
non-normality includes (i) historical simulation – both simple and 

Table 1: Testing Normality of Returns

Govt. Bond

Measure 
of 

Skewness

  
for 

Skewness

Excess 
Kurtosis

 
for 

Excess 
Kurtosis

Jarque-Bera 
Statistics

8.07% 
GS 2017

-0.74 68.55*
(0.0000)

8.15 2066.82* 
(0.0000)

2135.37* 
(0.0000)

7.37%     GS 
2014

-0.15 2.71
(0.0991)

9.16 2609.94*
(0.0000)

2612.66* 
(0.0000)

Note:   Figures within ( ) indicate signifi cance level (i.e. p-value) of corresponding statistics;    
‘*’ indicates signifi cant at 1% level of signifi cance.

χ2
1 χ2

1
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hybrid; (ii) RiskMetric approach – using exponentially weighted sum 
of squares of past returns to capture the conditional heteroscedasticity 
in returns; (iii) symmetric hyperbolic distribution – a distribution 
having fat-tails; and (iv) tail-index based method – an approach 
under extreme value theory that measure tail fatness (through tail-
index) and model tails of return distribution. 

 As seen earlier, the hybrid/weighted form of historical simulation 
approach requires a parameter δ, 0 < δ < 1, which determines the 
weights of past returns while estimating volatility or VaR. As δ takes 
a fraction value, sometimes fi xed at 0.98, the weight decays to with 
the increase in the remoteness of the past observation/return. We 
consider three alternative value of δ, viz., 0.94, 0.96 and 0.98.

 For implementing RiskMetric approach also, there is a need 
to fi x a value for the parameter λ. In original RiskMetric approach, 
value of this parameter was fi xed at 0.94. In this study, however, three 
alternatives values for λ, viz., 0.94, 0.96 and 0.98 are considered.

 Table 2 presents estimated 1-day VaRs, with probability level 
0.01 (i.e. 99% confi dence level), obtained by applying chosen 

Table 2: Estimated VaR in the Last Day of the Database

VaR Technique
Security

8.07% GS 
2017

7.37% GS 
2014

Normal – Benchmark Model 0.83 0.70
Historical Simulation - Simple 1.11 0.90

Historical Simulation – Hybrid/Weighted

λ = 0.94 2.08 1.66

λ  = 0.96 2.08 1.66

λ  = 0.98 2.08 1.66

Risk Metrics

λ  = 0.94 1.57 1.13

λ  = 0.96 1.75 1.43

λ  = 0.98 1.81 1.64

Hyperbolic Distribution 1.15 0.96
Tail Index 1.35 1.16



24 RESERVE BANK OF INDIA OCCASIONAL PAPERS

alternative techniques for the last day in our database.  Noting that 
returns do not follow normal distribution, VaR number is likely to 
be underestimated by normal method.  Our empirical results are 
consistent on this matter. As can be seen from Table 2, VaR estimates 
obtained from normal method are the lowest for selected bonds10. 

 Among the non-normal alternatives, historical simulation 
(simple) and hyperbolic distribution produces the lowest VaR 
numbers. On the other hand, the RiskMetric and hybrid historical 
simulation methods produce the highest VaR estimates.  The tail-
index based method results into VaR estimates some where in between 
these two sets of estimates. 

5.4 Evaluation of Competing VaR Models

 Competing VaR models were evaluated in terms of their 
accuracy in estimating VaR over last 447 days in the database. For 
each VaR model, we followed following steps: First, estimate 1-day 
VaR with 99% confi dence level (i.e. probability level 0.01) using the 
returns for fi rst 300 days. This estimate is then compared with the 
loss on 301st day. In case loss exceeds VaR, we say that an instance 
of VaR-violation has occurred. Second, estimate VaR for 302nd day 
using returns for past 300 days (covering the period from 2nd to 301st 
days). This estimate is then compared with the loss in 302nd day in 
the database to see whether any VaR-violation occurred. Third, the 
process is repeated until all data points are exhausted. Finally, count 
the number/percentage of VaR violation over the period of 447 days. 
For a good VaR model, percentage of VaR violation should be equal 
to the theoretical value 1% (corresponding with probability level 0.01 
of estimated VaR numbers). In Table 3, the number/percentage of 
VaR violation over last 447 days in the database is given separately 
for each of the competing VaR models. 

 As can be seen from Table 3, percentage of VaR violation for 
the benchmark model ‘normal method’ is above 3% - far above 
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the theoretical 1% percentage value. This higher than expected 
frequency of VaR-violation is attributable to the underestimation 
of VaR numbers. The RiskMetric and hybrid historical simulation 
approaches also could not reduce this estimation bias and at times, 
the frequency of VaR-violation for RiskMetric even exceeds that of 
the benchmark model. On the other hand, the accuracy level of VaR 
estimates obtained from ‘hyperbolic distribution’ and ‘tail-index’ 
methods are much better. In fact, going by the closeness of observed 
frequency of VaR violation with the theoretical 1% level, the ‘tail-
index’ method appears to be producing most accurate VaR numbers 
followed by the method using ‘hyperbolic distribution’. 

 In order to see whether the frequency of VaR-violation 
associated with competing VaR models can be considered as equal 
to the theoretical 1% value, we employed the popular Kupiec’s test. 
Relevant empirical results are presented in Table 4. As can be seen 
from this Table, the hypothesis that the frequency of VaR-violation is 
equal to the theoretical 1% value could not be accepted at 1% level 
of signifi cance for the benchmark ‘normal’ method. The results show 
that the observed frequency is signifi cantly higher than 1%, which 
indicates that the ‘normal’ method underestimates the VaR number. 
The Risk Metric approach also could not provide any improvement - 

Table 3: Number (Percentage) of VaR Violation*

VaR Technique Security
8.07% GS 2017 7.37% GS 2014

Normal – Benchmark Model 15 (3.36) 14 (3.14)
Historical Simulation - Simple 10 (2.24) 9 (2.02)
Historical Simulation – Hybrid/Weighted

λ = 0.94 9 (2.02) 9 (2.02)
λ = 0.96 11 (2.47) 12 (2.69)
λ= 0.98 12 (2.69) 15 (3.36)

Risk Metric
λ = 0.94 14 (3.14) 16 (3.59)
λ = 0.96 12 (2.69) 16 (3.59)
λ = 0.98 15 (3.36) 16 (3.59)

Hyperbolic Distribution 7 (1.57) 6 (1.35)
Tail Index 5 (1.12) 3 (0.67)

Note: ‘*’ Figures inside ( ) are percentage of VaR-Violation. For a good VaR model this fi gure 
should be ideally equal to 1%.
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the frequency of VaR violation associated with this approach is also 
statistically higher than 1% value. Thus, like the ‘normal’ method, 
the Risk Metric approach also underestimates VaR numbers in our 
case. Interestingly, historical simulation method, in its appropriately 
chosen form, is able to keep VaR-violation within the statistically 
acceptable level. However, further improvement is noticeable in 
estimates of VaR numbers using ‘hyperbolic distribution’ or more so 
using tail-index method. 

Table 4: Kupiec’c Tests – Observed Values of 
Chi-Square Statistics

VaR Technique

Security
8.07% GS 2017 7.37% GS 2014

Percentage 
of VaR-

Violation

Observed 
Value of 

χ2-statistics
(p-value)

Percentage 
of VaR-

Violation

Observed 
Value of        

χ2-statistics
(p-value)

Normal Method 
(Benchmark Model)

3.36 15.56***
(0.0004)

3.14 13.16*** 
(0.0014)

Historical Simulation – 
Simple

2.24 5.14 
(0.0766*)

2.02 3.60 
(0.1650)

Historical Simulation – 
Hybrid/Weighted

λ = 0.94 2.02 3.60 
(0.1650)

2.02 3.60 
(0.1650)

λ = 0.96 2.47 6.88** 
(0.0321)

2.69 8.80** 
(0.0123)

λ= 0.98 2.69 8.80**
(0.0123)

3.36 15.56***
(0.0004)

Risk Metric
λ = 0.94 3.14 13.16***

(0.0014)
3.59 18.10*** 

(0.0001)
λ = 0.96 2.69 8.80**

(0.0123)
3.59 18.10***

(0.0001)
λ = 0.98 3.36 15.56***

(0.0004)
3.59 18.10***

(0.0001)
Hyperbolic Distribution 1.57 1.25 

(0.5365)
1.35 0.48 

(0.7848)
Tail Index 1.12 0.06 

(0.9687)
0.67 0.55 

(0.7612)

Note: ‘***’, ‘**’ and ‘*’ denote signifi cant at 1%, 5% and 10% level of signifi cance, 
respectively. 
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 The evaluation criteria employed above uses only the frequency 
of VaR-violation.  But the magnitude of VaR violation, defi ned as 
the amount of loss in excess of estimated VaR, is also important 
in evaluating a VaR model. Accordingly, we evaluated value of 
Lopez’s (1998) loss-function (given by Eqn. 9) for each competing 
VaR models over the last 446 days in our database. Corresponding 
results are presented in Table 5. It is seen that the minimum values 
of loss-function are obtained for ‘tail-index’ method, followed by the 
‘hyperbolic distribution’. Historical simulation techniques also have 
lower loss-function value than the benchmark ‘normal’ method but 
once again the empirical results indicate that the Risk Metrics not 
necessarily improves the VaR estimates. 

Section VI

Concluding Remarks

 In this empirical paper we evaluated a number of competing 
models/methods for estimating VaR numbers for select Government 
bonds. Ideally one would like to estimate VaR as a measure of market 
risk for a much wider real portfolio held by any investor/institute. 
However, composition of and returns on such a portfolio is not readily 
available and there also exist certain data limitations. Under such a 

Table 5: Penalty/Loss-Function – Lopez’s Loss-Function

VaR Technique
Security

8.07% GS 2017 7.37% GS 2014
Normal – Benchmark Model 19.90 16.60
Historical Simulation - Simple 13.40 10.50
Historical Simulation – Hybrid/Weighted

λ = 0.94 10.70 10.20
λ  = 0.96 12.90 13.30
λ = 0.98 14.10 16.40

Risk Metrics
λ  = 0.94 24.00 21.00
λ = 0.96 21.00 19.00
λ  = 0.98 24.00 19.00

Hyperbolic Distribution 9.07 7.02
Tail Index 6.75 3.59
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situation, we chose two most liquid Government bonds during the 
period from August 2005 to July 2008 and constructed daily return 
series on the chosen two assets for the period. Though not aimed at 
analyzing market risk (value-at-risk) of any real bond portfolio, the 
study is useful in a sense that it demonstrates various relevant issues 
in details, which can be easily mimicked for any given portfolio.  

 If returns were normally distributed, estimation of VaR would be 
made simply by using fi rst two moments of the distribution and the 
tabulated values of standard normal distribution. But the experience 
from empirical literature shows that the task is potentially diffi cult 
for the fact that the fi nancial market returns seldom follow normal 
distribution. The returns in our database are identifi ed to follow 
fat-tailed, also possibly skewed, distribution. This observed non-
normality of returns has to be handled suitably while estimating VaR. 
Accordingly, we employed a number of non-normal VaR models, 
such as, historical simulation, RiskMetric, hyperbolic distribution 
fi t, method based on tail-index. Our empirical results show that 
the VaR estimates based on the conventional ‘normal’ method are 
usually biased downward (lower than actual) and the popular Risk 
Metric approach could not improve this level of underestimation. 
Interestingly, historical simulation method (in its suitable chosen 
form) can estimate VaR numbers more accurately. However, most 
accurate VaR estimates are obtained from the tail-index method 
followed by the method based on hyperbolic distribution fi t. 

Notes
1 This means VaR number increases (decreases) with the rise (fall) of 
confi dence level.
2  In the case of market risk, a related view is that ‘holding period’ may be 
determined from the ‘time required to hedge’ the market risk.
3 Note that ∆Wt(k) is the change in value of the assets in the fi nancial position 
from time point t to (t+k) and the k-period simple return would be measured by 
[100*{∆Wt(k)/Wt}]. Alternatively, k-period continuously compounded return, 
known as log-return, is defi ned by [100{loge(Wt+k) – loge(Wt)}]. Through out 
the article, the base of logarithmic transformation is ‘e’ and therefore, anti-log 
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(i.e. the inverse of log-transformation) of a real number x is anti-log(x) = ex; 
sometimes denoted by exp(x).
4 It may be noted that the simple HS method corresponds to δ =1, where each 
of the past k returns is assigned a constant weight 1/k.
5 Conventionally, μt+1|t is considered to be zero, though one can model the 
return process to have estimates of time-varying/conditional means.
6 The symmetric hyperbolic distribution is a special case of generalized 
hyperbolic distribution which depends on six parameters. For a discussion 
of hyperbolic distribution, generalized and symmetric, one may see Bauer 
(2000).
7  For more discussions on fi tting symmetric hyperbolic distribution, one may 
see the papers referred by Bauer (2000), such as, Eberlein and Keller (1995).
8  See, also, Gujarati (1995) for a discussion on the issues relating to Jarque-
Bera (1987) test for normality.
9  In this case the null hypothesis of zero skewness could be rejected only at 
10% or higher level of signifi cance.
10  For the sake of brevity, we present VaR estimates only for one day. But we 
have noticed the similar pattern in other days in our database also.
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