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Estimating Value at Risk (VaR) using Filtered 
Historical Simulation in the Indian capital market

Indrajit Roy*
	 The paper estimates Value at Risk (VaR) of the daily return of Indian capital market 
(SENSEX/NIFTY) using Filtered Historical Simulation (FHS). It uses GARCH framework to 
model the volatility clustering on returns and examines the usefulness of considering lag values 
of return (on S&P 500, INR-EURO INR-USD exchange rate, gold price) as proxies of global 
financial condition in the specification of the mean equation. In general, VaR is calculated 
using (i) Historical Simulation approach which imposes no structure on the distribution of 
returns except stationarity and (ii) Monte Carlo simulation approach which assumes parametric 
models for variance and subsequently a large sample of random members is drawn from this 
specific distribution to calculate the VaR. FHS approach attempts to combine the model-based 
approach with the model-free approaches. The VaR is estimated based on two approaches. In 
the first approach, the mean equation of daily return in Indian capital market is captured by its 
own lag and daily return of S&P-500, INR-EURO, INR-USD exchange rate and gold price; 
while volatility is modeled by GARCH model and finally the VaR is estimated through FHS. In 
the second approach, the mean equation is being captured by ARMA model, while volatility is 
modeled by GARCH model and finally the VaR is estimated through FHS. It is observed that 
VaR estimated using (a) GARCH with suitable mean specification, outperforms method (b) 
based on ARMA-GARCH.
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Introduction
	 Globalisation and financial sector reforms in India led to a greater 
integration of Indian stock market with the advanced economies and 
also to the exchange rate movements. In the early 1960s, Eugene Fama 
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developed efficient market hypothesis (EMH) which describes financial 
market as informational efficient. In an efficient market, actual price of 
a security will be a good estimate of its intrinsic value. Fama illustrated 
three forms of market efficiency, i.e., weak form, semi-strong form and 
strong form of market efficiency based on the availability of information. 
According to weak form of EMH, all past market prices and data are 
fully reflected in securities prices. In other words, technical analysis 
cannot be used to predict and beat a market. The semi-strong form of 
EMH assumes that all publicly available information is fully reflected 
in securities prices which essentially implies that fundamental analysis 
is of no use. Strong form of EMH assumes that market reflects even 
hidden/inside information. In other words, according to strong form 
of EMH, even insider/hidden information is of no use. The weak form 
of market efficiency hypothesis has been tested by Fama (1970) for 
U.S., Dryden (1970) for U.K., Conrad and Juttner (1973) for Germany, 
Jennergren and Korsvold (1975) for Norway and Sweden, Lawrence 
(1986) for Malaysia and Singapore, Andersen and Bollerslev (1997) 
for European markets. These studies provided indecisive results. The 
developed markets were found to be weak form efficient. On the other 
hand, evidence from emerging markets indicated rejection of the weak 
form market efficiency hypothesis. Therefore, question arises whether 
the returns in these emerging markets are predictable. Apart from the 
form of efficiency, it is the volatility prevailing in the market which 
influences the return to a large extent. Volatility, which refers to the degree 
of unpredictable change over time and can be measured by the standard 
deviation of a sample, often used to quantify the risk of the instrument of 
portfolio over that time period. Equity return volatility may be defined as 
the standard deviation of daily equity returns around the mean value of 
the equity return and the stock market volatility is the return volatility of 
the aggregate market portfolio. Engle (1982) introduced the concept of 
Autoregressive Conditional Heteroscedasticity (ARCH) which became 
a very powerful tool in the modelling of high frequency financial data. 
ARCH models allow the conditional variances to change through 
time as functions of past errors. Bollerslev (1986) made significant 
improvement on ARCH and introduced the Generalised Autoregressive 
Conditional Heteroscedasticity (GARCH) process. Further, many more 
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variations were introduced such as Integrated GARCH (IGARCH) by 
Engle and Bollerslev (1994) and the exponential GARCH (EGARCH) 
by Nelson (1991), where different re-specification of variance equation 
was studied.

	 In financial risk management, VaR is widely used as the risk 
measure and is defined as the maximum potential loss that would be 
incurred at a given probability p for a financial instrument or portfolio 
during a given period of time. In general, VaR is calculated either based 
on Historical Simulation (HS) approach, which imposes virtually no 
structure on the distribution of returns except stationarity, or using 
Monte Carlo simulation (MCS) approach which assumes parametric 
models for variance and subsequently large sample of random numbers 
is drawn from this specific distribution to calculate the desired risk 
measure. Filtered Historical Simulation (FHS) approach attempts to 
combine the best of the model-based with the best of the model-free 
approaches in a very intuitive fashion.

	 There have been some significant empirical studies on stock return 
volatility in emerging markets like India in recent years. However, there 
is hardly any study which estimated VaR following Filtered Historical 
Simulation approach using GARCH model with suitable mean 
specification, in the context of Indian capital market. Pattanaik and 
Chatterjee (2000) used ARCH/GARCH models to model the volatility 
in Indian financial market. Agarwal and Du (2005) using BSE 200 data 
found that the Indian stock market is integrated with the matured markets 
of the World. Raj and Dhal (2008) investigated the financial integration 
of India’s stock market with that of global and major regional markets. 
They used six stock price indices, i.e., the 200-scrip index of BSE to 
represent domestic market, stock price indices of Singapore and Hong 
Kong to represent the regional markets and three stock price indices of 
U.S., U.K. and Japan to represent the global markets. Based on daily 
as well as weekly data covering end-March 2003 to end-January 2008, 
they found that Indian market’s dependence on global markets, such as 
U.S. and U.K., was substantially higher than on regional markets such 
as Singapore and Hong Kong, while Japanese stock market had weak 
influence on Indian market.
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	 The paper examines the financial integration of Indian capital 
market (BSE-SENSEX and NSE-NIFTY) with other global indicators 
and its own volatility using daily returns covering the period January 
2003 to December 2009. The paper specifies a GARCH framework to 
model the phenomenon of volatility clustering on returns and examines 
the usefulness of considering lag values of returns (on S&P 500, 
INR-EURO INR-USD exchange rate, gold price) as proxies to global 
financial conditions in the specification of the mean equation. The paper 
also estimates VaR of return in the Indian capital market based on two 
composite methods, i.e., (a) using univariate GARCH model where in 
the mean equation we have used lag values of return on (S&P 500, 
INR-EURO & INR-USD exchange rate, Gold price) and following 
the filtered historical simulation (FHS) approach (b) using ARMA for 
mean equation, GARCH for volatility and FHS for VaR estimation, i.e., 
ARMA-GARCH-FHS methods; and finally compares the performance 
of both the VaR estimates.

	 The rest of the paper is organised as follows. Section II describes 
the portfolio model using GARCH specifications, section III describes 
estimate of VaR based on HS, MCS and FHS. Section IV discusses 
the data and focuses on VaR calculation and summarising the results. 
Finally, section V concludes.

Section II
The Portfolio Model

	 In the financial literature, it is well documented that variance of 
asset returns, in general, changes over time and GARCH models are 
popular choice to model these changing variances. Let rt; t = 1, …, T , 
represents the continuously compounded rate of returns of a stock price 
index (for holding the portfolio for one day) at time t. If pt is the stock 
price index then rt= ln(pt)– ln(pt-1), where ‘ln’ is the natural logarithm. 
The model can be written as: 
rt+1=c+f1rt+ f2rt-1+..+ fkrt+1-k+ψ1x1,t+1+ ψ2x2,t+1+..+ ψsxs,t+1+σt+1ηt+1 ;
σ2

t+1= ω+ αResid2
t + βσ2

t ; t=1,2…T					     (1)
where Residt =(rt– c - Σfirt-I - Σψjxj,t); innovation {ηt} is white noise 
process, with zero mean and unit variance and α+β <1, X1..Xs are the 
external factors influencing rt.



Estimating Value at Risk85

Section III
Value at Risk

	 Value at Risk is being widely used as measure of market risk of 
an asset or of a portfolio. The Parametric VaR model imposes a strong 
theoretical assumption on the underlying properties of data; frequently 
Normal Distribution is assumed because it is well understood and can 
be defined using the first two moments (mean and standard deviation). 
Other probability distributions may be used, but at a higher computational 
cost. However, empirical evidence indicates that asset price changes, 
in particular the daily price changes, often do not follow normal 
distribution. In the presence of excess kurtosis, failure rate increases 
when the VaR is estimated by the Gaussian distribution. The 100α% 
one day ahead VaR (λα,t) is defined as P[rt<=λα,t | rt-1]= α. In general, 
VaR techniques are based on non-parametric, parametric or mixture 
of parametric and non-parametric statistical methods. The family of 
Historical Simulation (HS) models is a non-parametric approach. The 
FHS as developed by Barone-Adesi et al (1998) and Barone-Adesi et al 
(1999, 2000) is a mixture of parametric and non-parametric approach.

Historical Simulation

	 Apart from stationarity of the returns, HS method does not require 
any statistical assumption in particular to the volatility. In HS method 
we consider the availability of a past sequence of daily portfolio returns 
for m days; rt t=1,2…m. The HS technique simply assumes that the 
distribution of tomorrow’s portfolio returns, rt+1, is well approximated by 
the empirical distribution of the past m observations-that is, {rt+1-τ}τ=1..m.  
In other words, the distribution of rt+1is captured by the histogram 
of {rt+1-τ}τ=1..m. Thus, we simply arrange the returns in {rt+1-τ}τ=1..m in 
ascending order and choose the VaRp

t+1 to be a number such that only 
100p% of the observations are smaller than the VaRp

t+1.

Monte Carlo Simulation (MCS)

	 MCS can be explained better through an example. Let us consider 
GARCH(1,1) model as defined in equation (1), i.e.:
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rt+1=c+f1rt+ f2rt-1+..+ fkrt+1-k+ψ1x1,t+1+ ψx2,t+1+..+ ψsxs,t+1+σt+1ηt+1 ; 
t=1,2…T σ2

t+1= ω+ αResid2
t 

+
 βσ2

t

where Residt =(rt– c - Σfirt-I - Σψjxj,t); innovation {ηt} is white noise 
process, with zero mean and unit variance and α+β <1. Although in 
the case of daily asset returns, generally, ηt does not follow normal 
distribution but using other probability distributions is computionally 
very costly, let us assume ηt follows Normal Distribution N(0,1).
	 Based on the above specified GARCH model, at the end of day ‘t’ 
we can calculate the variance of day ‘t+1’, i.e., σ^2

t+1.

	 Let {η^
i,1; i=1,2…L) be a set of large number of random numbers 

drawn from the standard Normal Distribution N(0,1). From these 
random numbers {ηi,1; i=1,2…L}, we can calculate a set of hypothetical 
returns for day ‘t+1’ as

r^
i,t+1= c+Σfirt+1-i+Σψjxt+1-j+σ^

t+1 ηi,1
^ ; i=1,2…L

Resid i,t+1=( r^
i,t+1- c-Σfirt+1-i-Σψjxt+1-j) 

Given these hypothetical estimated returns (r^
i,t+1) for day ‘t+1’, we can 

compute the hypothetical variances for the ‘t+2’ day as :

σ^2
t+2= ω+ αResid2

t+1 + βσ^2
t+1

Similarly, to estimate the hypothetical return (r^
i,t+2) on day t+2, a large 

number of pseudo random numbers is drawn again from the N(0, 1) 
distribution, i.e., {ηi,2; i=1,2…L}

r^
i,t+2 =c+Σfirt+2i+Σψjxt+2j+σ^

t+2ηi,2
^ ; i=1,2…L

Resid i,t+2=( r^
i,t+2 - c-Σfirt+2-i-Σψjxt+2-j)

and variance is now updated by

σ^2
t+3= ω+ αResid2

t+2 + βσ^2
t+2

Similarly, we can get the hypothetical return of ‘t+k’ day

r^
i,t+k =c+Σfi*ri,t+k-1+Σψj*xj,t+k-1+σ^

t+k-1*ηi,k
^ ; i=1,2…L
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Therefore, hypothetical Kth return can be written as:

r^
i,t+1:t+k =Σkr

^
i,t+k; i=1,2…L

If we collect these L hypothetical K-day returns in a set  
{ r^

i,t+1:t+k; i=1,2…L}, then the K-day VaR can be calculated as the 100p 
percentile, i.e.:

VaRp
t+1:t+k = - Percentile  [{ r^

i,t+1:t+k;i=1,2…L},100p}]

Filtered Historical Simulation (FHS)

	 As we have discussed that non-parametric approach such as HS does 
not assume any statistical distribution of returns, whereas parametric 
approach such as the Monte Carlo simulation (MCS) takes the opposite 
view and assumes parametric models for variance, correlation (if a 
disaggregate model is estimated), and the distribution of standardised 
returns. Random numbers are then drawn from this distribution to 
calculate the VaR. Both of these extremes in the model-free/model-
based spectrum have pros and cons. MCS is good if the assumed 
distribution is fairly accurate in description of reality. HS is sensible as 
the observed data may capture features of the returns distribution that 
are not captured by any standard parametric model. The FHS approach, 
on the other hand, attempts to combine the best of the MCS with the 
best of the HS.

	 Let us assume that we have estimated a GARCH-type model 
of our portfolio variance given in equation (1). Although we may be 
comfortable with our variance model (σ), we may not be comfortable 
in making a specific distributional assumption about the (η), such as a 
Normal or a t distribution. Instead of that, we might like the past returns 
data (rt) to determine the distribution directly without making further 
assumptions.

	 Given a sequence of past returns and estimated GARCH volatility, 
{ rt+1- τ, σ

^
t+1-τ ; τ =1,2…m} calculated past standardised returns are given 

by η^
t+1- τ = (rt+1- τ –E(rt+1- τ))/ σ

^
t+1-τ; τ =1,2…m

	 Instead of drawing random η^s from a specific probability 
distribution as it is done in MCS, in FHS method samples are drawn 
with replacement from {η^t+1- τ; τ =1,2…m}.Thereafter, we can get the 
hypothetical return of ‘t+k’ day as:
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r^
i,t+k =c+Σfi*ri,t+k-1+Σψj*xj,t+k-1+σ^

t+k-1*η
^
i,k ; i=1,2…L.

Therefore, hypothetical K-day return can be written as :

r^
i,t+1:t+k =Σkr

^
i,t+k; i=1,2…L

The K-day VaR can be calculated based on L estimated k-day returns 
{r^

i,t+1:t+k} as the 100p percentile, i.e.,

VaRp
t+1:t+k = - Percentile [{ r^

i,t+1:t+k;i=1,2…L},100p]

Section IV 
VaR Model Selection: Statistical Tests

	 Lopez (1998, 1999) formalised the use of loss functions as a means 
of evaluating VaR models and risk managers prefer the VaR model 
which maximises the utility function (minimises loss). Therefore, using 
utility functions in the evaluation of alternative VaR estimators is more 
effective than other nonparametric test such as Christoffersen’s (1998) 
“conditional coverage” test. Lopez (1998,1999) proposed three loss 
functions, viz. the binomial loss function, the magnitude loss function 
and the zone loss function. Sharma, Thomas and Shah (2002) used a 
regulatory loss function to reflect the regulatory loss function (RLF), 
and a firm’s loss function (FLF) which reflects the utility function of a 
firm. The regulatory loss function linked to the objectives of the financial 
regulator and the firm’s loss function primarily focused in measuring 
the opportunity cost of firm’s capital. Let rt be the change in the value 
of a portfolio over a certain horizon and vt is the VaR estimate at (1-p) 
level of significance.

Regulatory Loss Function (RLF)

	 It penalises failure differently from the binomial loss function, and 
pays attention to the magnitude of the failure.

lt= 


 <−

otherwise
vtrtifvtrt

0
)( 2

Firm’s Loss Function (FLF)

	 There is a conflict between the goal of safety and goal of profit 
maximisation for an organisation which uses VaR for internal risk 
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management. There is an opportunity cost of capital for the firm which 
uses a particular VaR model which specifies a relatively high value of 
VaR as compared to other VaR model. The FLF is defined as :

lt = 



−
<−

otherwisev
vtrtifvtrt

tα

2)(

Where α measures the opportunity cost of capital.

Let zt=lit-ljt, where lit and ljt are the values of a particular loss function 
generated by model i and model j respectively, for the day t. If θ is the 
median of distribution of zt then the superiority of model i over model j 
with respect to a certain loss function can be tested by performing one-
sided sign test.

H0 = {θ = 0}

H1 = {θ < 0}

Let 


 ≥

=
otherwise
zif t

t 0
01

ψ  and  ∑=
=
ψ

The test statistics is 

 ~ N(0,1) asymptotically.

If < -1.66, H0 is rejected at 5 percent level of significance, which 
would imply that model i is significantly better than model j.

	 The Diebold-Mariano test (1995) aims to test the null hypothesis 
of equality of expected forecast accuracy against the alternative of 
different forecasting ability across models. Let {yt} denote the series to 
be forecast and let y1

t+h|tand y2
t+h|tdenote two competing forecasts of yt+h. 

The forecast errors from the two models are :

ε1
t+h|t = yt+h− y1

t+h|t

ε2t+h|t = yt+h− y2
t+h|t

Some common loss functions are :
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Squared error loss: L(εi
t+h|t) =(εi

t+h|t)
2

Absolute error loss: L(εi
t+h|t) =|εi

t+h|t|

	 The Diebold-Mariano test is based on the loss differential, i.e.,

dt= L(ε1
t+h|t) − L(ε2

t+h|t)

	 The null of equal predictive accuracy is then :

H0 :E[d t] = 0

	 The Diebold-Mariano test statistic is

S =  =  

where ∑
=

=

∑
=

+=
α

γγ
1

0 2
j

jdLRV = cov(dt,dt-j)

	 dVLR ˆ is a consistent estimate of the asymptotic (long-run) variance 

of √T d .

	 Diebold and Mariano (1995) show that under the null of equal 
predictive accuracy S ~ N(0, 1) asymptotically.

Section V 
Empirical Results

	 In the study, we have used daily data of two stock price indices, 
viz., BSE-SENSEX (BSE) and NSE-NIFTY (NSE) covering the period 
from January 2003 to December 2009. We have estimated 1-day VaR 
for daily returns of two price indices using univariate GARCH model 
with proper mean specification and following the FHS approach for 
VaR estimation. We have also estimated VaR of return using ARMA-
GARCH-FHS model and compare the performance of both the VaR 
estimate. We have used daily S&P500 stock price (SP), daily exchange 
rate of INR-USD (usd), INR-EURO (euro) and also the gold prices in 
INR/ounce (gold) for the same period as explanatory variable of the 
mean equation of the stock prices return. Unit root tests (ADF, PP test) 
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suggest that level series of all the six data series are non-stationary.
However, continuous daily return, i.e., log differences of the series 
(dlbse, dlnse, dlsp, dlusd, dleuro and dlgold) are stationary.
Stylised facts
	 Continuous daily return (log difference) and kernel density of 
returns on BSE-SENSEX, NSE-NIFTY, S&P500, INR-USD exchange 
rate, INR-EURO exchange rate and gold prices for the reference period 
are given in Chart 1 and descriptive statistics are given in table 1. There 
is a clear presence of fat tails in the return distribution of all the six data 
series. Various normality test (such as Anderson Darling normality test, 
Cramer-Von Mises normality test) suggests that the return distributions 
are not Gaussian normal.

Chart 1: Plot of daily returns and kernel density of  
Modelling Volatility
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	 Equations (2) and (3) present the estimated portfolio model where 
lag values of (dlbse, dlsp, dlusd, dleuro and dlgold) are used in the mean 
equation of the GARCH(1,1) model of BSE and NSE, respectively.

Eq (2):

D(LOG(BSE)) = 0.00152 + 0.32558*D(LOG(SP500(-1))) + 
              (0.00027)		     (0.02662)
0.16716*D(LOG(SP500(-2))) + 0.13393*D(LOG(SP500(-3))) + 
(0.026299)	 (0.029617)
0.10005*D(LOG(SP500(-4))) - 0.06044*D(LOG(BSE(-2))) – 
(0.027628)	 (0.025798)
0.04891*D(LOG(BSE(-3))) + 0.05722*D(LOG(GOLD(-2))) + 
(0.020935)	 (0.023705)
0.15824*D(LOG(EURO(-3))) - 0.24620*D(LOG(USD(-3))) + 
(0.053619)	 (0.088501)
0.15767*D(LOG(USD(-4)))
(0.084305)

GARCH = 5.049e-06 + 0.1527939*RESID(-1)^2 + 0.83803454* 
GARCH(-1)
			   (5.05E-06)	  (0.152794) 		  (0.838035)

Table 1: Descriptive statistics

  DLNSE DLBSE DLSP DLUSD DLEURO DLGOLD

 Mean 0.000804 0.000849 0.000105 -2.02E-05 0.000134 0.000617

 Median 0.001078 0.001614 0.000799 0 0 0.000865

 Maximum 0.163343 0.1599 0.109572 0.024903 0.0279 0.071278

 Minimum -0.13054 -0.11809 -0.0947 -0.03007 -0.03889 -0.08396

 Std. Dev. 0.017498 0.017166 0.013291 0.003855 0.006085 0.012485

Skewness -0.31933 -0.11242 -0.23195 -0.02245 -0.14065 -0.30721

 Kurtosis 12.07311 11.0435 15.13967 10.82578 5.58351 6.944578

Jarque-Bera 6370.147 4985.629 11364.19 4715.852 520.0318 1211.227

 Sum 1.485895 1.569306 0.193701 -0.03735 0.24755 1.126134

 Sum Sq. Dev. 0.56552 0.544288 0.326289 0.027452 0.068397 0.284156

 Observations 1848 1848 1848 1848 1848 1824
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Eq (3):

D(LOG(NSE)) = 0.00134 + 0.32468*D(LOG(SP500(-1))) + 
	             (0.000292)		  (0.027540)
0.16821*D(LOG(SP500(-2))) + 0.10268*D(LOG(SP500(-3))) – 
		  (0.027508)		   	 (0.030620)
0.03877*D(LOG(NSE(-2))) + 0.06159*D(LOG(GOLD(-2))) +
		  (0.026039)			    (0.025277)
 0.17716*D(LOG(EURO(-3))) - 0.34938*D(LOG(DOLLAR(-3))) + 
		  (0.051925) 			   (0.088119)
0.19060*D(LOG(DOLLAR(-4)))
		  (0.087568)

GARCH = 5.52699e-06 + 0.13072*RESID(-1)^2 + 0.85739*GARCH(-1)
	           (5.53E-06)      (0.130725)                     (0.857389)

Equation (4) and (5) presents the estimated portfolio model using 
ARMA-GARCH model of BSE and NSE respectively.

Eq (4):

D(LOG(BSE)) = 0.00161 + [AR(1)=0.52534,AR(2)= -0.87026, 
			       (0.000314)   (0.062328)     (0.061490) 
MA(2)=0.79823,MA(3)=0.12583,MA(1)=-0.42263]
  (0.066763)	   (0.026230)     (0.066514)

GARCH = 6.28919e-06 + 0.15594*RESID(-1)^2 + 0.83073*GARCH(-1)
                  (6.29E-06)      (0.155941)                     (0.830730)

Eq (5):

D(LOG(NSE)) = 0.00160+ [AR(2)=-0.45572,AR(4)=-0.6135
              (0.000317)    (0.084090)    (0.096555) 
AR(1)=0.49844,MA(2)=0.42253,MA(4)=0.67288,MA(1)=-0.43386]
      (0.134215)    (0.079148)    (0.092978)    (0.127459)	

GARCH = 7.61169e-06 + 0.13774*RESID(-1)^2 + 0.84330*GARCH(-1)
                  (1.12E-06)      (0.011880)                     (0.012652)

Note: *Values given in brackets are the standard error.
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Value at Risk: Results

	 We have estimated 5 percent 1-day-VaR for both BSE-SENSEX 
and NSE-NIFTY daily return using univariate GARCH model with 
proper mean specification as estimated in section 4.2 and following the 
FHS approach for VaR estimation (Model A). We have also estimated 
5 percent VaR for both BSE-SENSEX and NSE-NIFTY daily return 
using ARMA-GARCH-FHS model (Model B). To estimate the model 
parameter we have used the daily data from 2nd January 2003 to 30th 
October 2009 and forecasted dynamically 1-day VaR for the period 2nd 
November 2009 to 24thDecember 2009, i.e., for 39 days. Actual returns 
and forecasted VaR based on both Model A and Model B for BSE-
SENSE and NSE-NIFTY are given in Chart 2 and Chart 3, respectively. 
Out of 39 forecasts of VaR for BSE and NSE, only in one occasion, 
actual return was less than the VaR estimate (failure rate 1/39) for both 
model A and model B. However, dispersion of VaR from actual returns 
is not the same. Let the dispersion of VaR at 5 percent significant level 
based on model A (AVaRt

.05) from the actual return (rt) be DA=Σ(rt- 
AVaRt

.05)2 and DB=Σ(rt- 
BVaRt

.05)2 for mode B. It is observed that for both 
BSE-SENSEX and NSE-NIFTY price indices dispersions are less for 
model A than model B (DA

BSE =0.02483, DB
BSE =0.03022), (DA

NSE = 
0.02603, DB

NSE =0.03049).
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Chart 2: Daily return on BSE and corresponding VaR based
on Model A and Model B
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	 RLF and FLF based test as outlined by Sharma, Thomas and Shah 
(2002) suggests that at 1 percet level of significance, Model A performs 
better than model B for both BSE-SENSEX and NSE-NIFTY. Diebold-
Mariano (1995) test, as outlined in section IV, to test whether losses are 
statistically significantly different, also indicates that performance of 
model A is significantly (10 per cent level of significance) better than 
model B for both the indices BSE-SENSEX and NSE-NIFTY.

Section VI 
Conclusion

	 The paper estimates 1-day VaR taking into consideration the 
financial integration of Indian capital market (BSE-SENSEX and NSE-
NIFTY) with other global indicators and its own volatility using daily 
return covering the period January 2003 to December 2009. The paper 
specifies a GARCH framework to model the phenomena of volatility 
clustering on returns and examines the usefulness of considering lag 
values of return on (S&P 500, INR-EURO and INR-USD exchange rate, 
gold price) as proxies to global financial condition in the specification 
of the mean equation. The paper estimates the VaR of return in the 
Indian capital market based on two composite methods, i.e., (a) using 
univariate GARCH model wherein the mean equation uses lag values of 
return on (S&P 500, INR-EURO & INR-USD exchange rate, gold price) 
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Chart 3: Daily return on NSE and corresponding VaR based
on Model A and Model B
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and following the FHS approach (b) using ARMA (for mean equation)-
GARCH (to model volatility)-FHS(to estimate VaR) and compare 
the performance of both the VaR estimates. It is observed that global 
financial situation (lag values of return on S&P 500, INR-EURO and 
INR-USD exchange rate, gold price used as proxies to global financial 
condition) has significant impact on Indian capital market and VaR (as 
estimated in FHS framework) of return in the Indian capital market 
based on GARCH method with suitable mean specification outperforms 
the ARMA-GARCH model of daily return of Indian capital market.
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