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Appendix 

Technical Note 

 

1. Model based simulation methods for count data:  Estimation of counterfeits 

involves modelling of count data observed for a moving population where nobody 

can put a conceivable upper bound for a given space and time domain. It is akin to 

tracking occurrence of a particular trait-related event (contingent event) in a 

sequence of experimental trials. Examples are accidents on a highway, number of 

misprints or defective items, number of birds, fishes etc. of specific species in the 

population based on a series of hauls. Model based simulation of count data finds 

intensive applications in the areas of clinical trials, estimation of abnormality of blood 

cells in haematology, cytogenetic studies on chromosomal abnormalities and 

enumeration of aquatic marine species of rare variety. Crash count data analysis 

also is an important area being pursued in traffic safety analyses. In such 

phenomena, population sizes could be large as well as variable, but mostly unknown 

where the entities can be sighted only at a very low frequency. The first statistical 

method of estimation for such low frequency event for large population was made by 

J.B.S. Haldane (1945) based on sequential sampling. Two specific features of such 

population are notable for modelling purpose. One is low but varying nature of 

frequency of occurrence of the particular trait-related event and the other aspect is 

that the variance of the expected number of occurrence of the event is more than the 

expected number. Inverse sampling is an often-used method adopted for estimating 

frequency of occurrence of such low probability event in a highly dispersed 

population.    

   

1.1. Classical approach (Fixed sample size):  When frequency (π) of the key 

attribute does not change much from one sample to another, fixed sample size 

approach  is suggested to estimate π, for which the standard error estimate (SEE) of 

the sample estimate (p = number of sampling units bearing the attribute/n) is √( π (1- 

π)/n). It is akin to tossing a coin n times (Bernoulli trials) and observing number of 

‘head’s (generally termed as ‘success’). Each trial (or, tossing the coin) is assumed 

to be carried out independently where chance of getting a ‘head’ is π and the 

resulting distribution model is Binomial Distribution. Such trial runs of prefixed finite 

sizes would however lead to biased estimate if it is felt that π is varying in nature, 

particularly when occur with some degree of rarity. If n = 1000, and π = 0.3, the SEE 

is 0.015, but if π = 0.01, the SEE is 0.0031. Very low SEE makes any two different 

populations indistinguishable with more and more smaller π. For example, when π 

=0.01 and 0.005, SEE= 0.0031 and 0.0022 respectively.  Similarly, for all the more 
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smaller frequencies π = 0.000573, 0.000533, 0.000491, 0.000327 and .000263, if 

taken as tentative frequencies of counterfeits as commonly reported ratio of 

counterfeit notes observed amidst a very large size of currency in circulation), the 

SEE = 0.00076, 0.00073, 0.00070, 0.00057 and 0.00051 respectively, which are 

very small rendering the estimation procedure statistically meaningless.  

 

1.2. Inverse sampling (Variable sample size): Besides low value of π, very large 

population size and possible non-stationary nature of variability of π over time would 

render the fixed sample size procedure to estimate frequency of count data 

untenable. Sudden spurt in counterfeiting activities leading to sizable jump in 

counterfeit notes detection may alter the occurrence of the contingency of 

encountering a forged note and in such situations inherent variability in the count 

data could be more than expected number of trials required to detect any fixed 

number of counterfeits. To have a meaningful estimation procedure, J.B.S Haldane 

(1945) had introduced the method of inverse (binomial) sampling based on 

probability distribution based method which requires that random sampling be 

continued until a specified quota of units with the attribute (counterfeit) has been 

obtained.  The method is based on distributional model that suits the empirically 

observed property of relevant count data. If the proportion of individuals possessing 

a certain characteristic is π and we sample until we see r such individuals, then the 

number of individuals sampled is a negative binomial random variable. Its relevance 

can be further understood from the following three alternative models used for 

infinitely large count data.   

 

1.3. Simulation of large binomial count data: Inverse sampling method is 

premised upon three commonly adopted frequency/density estimation models for 

infinitely large binomial count data namely (i) Poisson Distribution, (ii) Negative 

Binomial Distribution and (iii) Negative Hypergeometric Distribution.   

 

1.3.1 Poisson probability models: Single parameter ( ) Poisson model is the 

distribution of the number X of certain random events occurring in the course of a 

sequence of trials where frequency function is P {X = k} = e-λ (λ) k/ k! , k = 0, 1, 2 .… 

When used for modelling the distribution of random number of points occurring in a 

pre-designed area, the parameter  of the distribution is proportional to the size 

(length, area or volume) of the domain. Then,  is the expected number of the 

contingent event (rate per unit of time, say a month or a year) and k is the sample 

observations on number of discrete the events recorded in the experimental trial. 

Poisson distribution gives a fair approximation to binomial distribution connected with 
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a sequence of fixed number of independent trials yielding to ‘success’ or ‘failure’ in 

each trial (e.g., ‘head’ or ‘tail’ in tossing a coin n times; ‘success’ may be termed as 

sighting/detecting ‘counterfeit’ while inspecting a pre-fixed number (n) of currency 

notes). Poisson probability law works as a good approximation when n is large and 

very small chance (π) of occurrence of ‘success’ (detecting a ‘counterfeit’)  so that np 

is more or less a stable number ( ≈  ). Adopting Poisson models has an overriding 

requirement, namely Mean = Variance (= ). However, in reality it is often found that 

variance is larger than the average value observed empirically, which actually 

characterises a dispersed population. Then the commonly adopted approach is to fit 

a negative binomial distribution. It may be noted, even in finite case of binomial 

distribution, the expected value is larger than the variance (n. π > n. p. (1- π)). Neither 

fixed large sample sized Binomial distribution nor Poisson distribution (as a limiting 

form of large but fixed size Binomial distribution) is suitable in such cases. Negative 

binomial fits the situation as theoretically the variable of interest (notes in circulation) 

can be infinitely large and the variance is greater than the expected value of the 

variable.    

 

1.3.2. Modelling over-dispersion: Over-dispersion is a typical feature encountered 

in large size count data that is not amenable to Poisson distribution based model 

simulation. Ignoring dispersion amounts to overweighing the data and consequent 

underestimating the uncertainty. The well-known Poisson distribution is fully 

definable by a single parameter, the mean ( ), which is equal to its variance. But as 

would be discussed below, variance to mean ratio could significantly exceed unity, 

which is often referred to as over-dispersion. Many such count data are satisfactorily 

fitted with the negative binomial distribution (NBD), which finds ready applications to 

various biological and industrial problems.  Student (1907) derived its distribution 

during the course of making counts of yeast cells. Subsequently scores of applied 

researchers established successfully various forms of the negative binomial model in 

explaining counts of insects pests, problems of germination records in the 1940s and 

1950s or even better modelling of dispersion parameter being pursued in the recent 

time for motor collision data with low sample mean obtained for small sample sized 

observations. 

Here lies the ingenuity of designing the experiment of observing the data based on 

occurrence of the particular entity or event being tracked through (i) suitable 

structured area or zone (e.g., dividing sea-bed in square units to observe presence 

of an aquatic specimen, which we call a ‘success’ amidst remaining other species 

termed as ‘failure’), or (ii) different time periods as well as zones (e.g., selected peak 

hour periods for important part of vehicular traffic lanes and crossings to observe 

number of accidents, the so called ‘successes’, against vehicles passing through 
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without any accident). There could be bunching of events i.e., occurrence of multiple 

‘successes’, in real life phenomenon because of scaling problem, particularly if it 

happens to be oft repeated a phenomenon. Even with a workable scaling, modeling 

efforts may need to data censoring technique or identifying mixtures of probable 

underlying random behavior.  All these are very much true foe estimating counterfeit 

currency notes circulating in the system. 

 

1.3.3. Negative binomial distribution (NBD): NBD is used for simulating count data 

pertaining to occurrence of dichotomous outcomes in the form of ‘success’ or ‘failure’ 

depending on sighting of the particular trait successfully or not in a sequence of 

independent trials. By assigning the probability of success (say, π) in each trial, if 

experiment continues until a total of r successes are observed, where r is fixed in 

advance, the probability distribution of the number of failures (X) before the r-th 

success follows the following frequency law21: 

          (10) 

Here, 0 ≤ π ≤1, x = 0, 1, 2…., and the random variable X denotes number of failures 

before the r-th success is observed. For example X = 0 means all the first r trials 

have resulted in a continuous chain of r successes; and for observation like X = k, it 

means that n = k + r number of trials have led to r number of successes. We would 

denote the fact that ‘X is distributed as negative binomial distribution with the 

parameters r and π’ as X ~ NB (r, π).  

Some useful properties of the negative binomial distribution are worth mentioning 

here. (i) Mean, variance and skewness of a distribution are critical for modeling count 

data on occurrences of counterfeit notes. Mean (i.e., expected value in the form of 

arithmetic mean or common average term) and the variance of NB (r, π) are:  

 

The distribution is positively skewed meaning that the right tail is longer with the 

mass of the distribution getting concentrated on the left of the figure. It has a few 

relatively high values so that mean > median > mode. As per standard measure of 

skewness, negative binomial distribution portrays very high amount of positive 

skewness:  (2 – π)/ √(r (1 – π)). It reduces with increased r and becomes almost 

symmetric for large r (≥ 40) like the bell-shaped normal curve whereby mean ~ 

                                                   
21

  The formula for P(X = x) in (10) can be written as , the r-th term of 

, which involves  ‘negative binomial’ terms.  
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median ~ mode and for moderately large r, it behaves like a Poisson distribution with 

the mean rate ( ) ~ r (1 – π)/ π. The parameter r, known as the shape parameter, 

helps model the underlying distribution flexibly so as to include variety of possible 

shapes within generally acceptable ranges of moderately small values of r. Key 

terms and properties associated with NBD-based simulation22 are as under.   

 

1.3.3.1 Measure of dispersion: Variance of the NBD random variable is greater 

than its expected value, which is a key feature of the distribution. As Var (X)/E (X) = 

1/π (>1), departure of variance to mean from 1 makes the occurrence of successes 

more sparse or dispersed for lower chance of occurrence of success. In reality, to 

make the cont data amenable to NBD model, the sample data ought to exhibit a 

large variance and a small mean, and display over-dispersion with a variance-to-

mean value greater than one. 

o Dispersion parameter: φ = Var (X)/E(X) – 1 = (1/π – 1) = (1-π)/ π gives a 

measure of dispersion of relatively rare trait in the count data. (It is mostly 

interpreted as the degree of departure from orderly behaving Poisson 

distribution). 

o NBD based inverse sampling: To adopt inverse sampling scheme by fitting 

NBD to observed frequency data on ‘successes’ namely, say, detecting 

counterfeit notes in a sequential random draw of currency notes in circulation 

(NIC), dispersion (φ) of the count data has to be large. As real life simulation 

exercises are concerned, for very small value of π, the chance of occurrence 

of one unit of counterfeit, one may need to inspect a very large number of 

notes in circulation (NIC). 

o The term “inverse”: If Xr ~ NB D(r, π) and for any fixed s, Ys + r is the random 

variable representing the binomial distribution with parameters s + r and π, 

then it can be shown that: Pr ( X r ≤ s ) = Pr (Ys + r ≥ r)  Probability that there 

are at least r successes out of  s + r trials. (It may be noted that Xr can take 

very large integral value, whereas Ys+r is of finite size from 0 to s + r). In this 

sense, the negative binomial distribution is the "inverse" of the binomial 

distribution. 

o Estimation: Suppose π is unknown and an experiment is conducted where it 

is decided ahead of time that sampling will continue until r successes are 

found. The sufficient statistics for the experiment is the number of failures (k). 

                                                   
22

 Ideally speaking, sampling without replacement case fits the counterfeit note examination case, for 

which negative hypergeometric distribution based simulation would be an ideal approach. However, 
for relatively large numbers, it is better to approximate with negative binomial distribution. Computing 
variance and higher order moments is an involved exercise which requires much compuatation 
intensive process which can be adopted for further fine-tuning.  
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In estimating π, the minimum variance unbiased estimator (MVUE) derived by 

Haldane (1945) is: , and not the common sense estimator, 

namely , because  this is biased.  

 Best estimator: Minimum variance unbiased estimator (MVUE) of frequency of 

occurrence of the less common attribute (‘success) is, therefore,  

and not r/n, the ratio of the number of ‘successes’ to the total number of trials 

where n = r + k, as is the case for a fixed and finite number of Bernoulli trials. This 

 is also minimum variance unbiased estimator (MVUE). An unbiased estimator 

of the variance of the above MVUE  was shown by Finney (1949) to be 

 Therefore, in inverse sampling simulation based on 

negative binomial distribution (NBD), the MVUE of the success probability and 

unbiased estimator of its variance are:   

 

 Practical rules: Following observations about the MVUE  and estimator of its 

variance are useful for having some practical rules for adopting inverse sampling. 

o The standard error is a satisfactory indicator of the error of estimation of π 

only when r is large. 

o Actually, Var ( ) has a complicated expression and sharper bounds have 

been reported in the literature and some subsequent works23. Assuming s 

= Var ( ), an upper limit to s/  can be fixed in advance of sampling 

for a reasonable value of r, so that an upper value can be obtained for 

this ratio as   s/   = √ {(1- )/(r – 1 – )} ≈   √ {1/(r-1)} for small . 

 Randomness and error estimate: As the practice of inverse sampling involves 

collection of the data in order, the sample also provides evidence of whether the 

condition of independence of successive observations is fulfilled. If successive 

individuals are independent of one another, (r-1) entities having the attribute 

should be distributed at random  intervals throughout the first (n-1) counted; a 

departure from independence, such as would result from a clustering of 

counterfeits) would increase the frequency of short and long gaps between these 

intervals at the expense of intervals of moderate length. A test of significance may 

                                                   
23

 The paper on “Estimation of a probability with optimum guaranteed confidence in inverse binomial 
sampling” by  Luis Mendo  and Jos’em. Hernando, Bernoulli 16 (2), 2010, 493-513 provides the latest 
update on the matter. 
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be carried out periodically based upon the observed frequency with which the 

units with the ‘rare trait’ are preceded and followed by the normal ones or some 

other suitable statistic based upon the length of intervals. Significant deviation 

from the value predicted by a hypothesis of randomness of intervals, whether 

resulting from clustering of the less common phenomenon from an expected 

regularity of intervals, would indicate that the standard error and limits of error 

cited above may not be applicable (Finney, 1949). 

 Stylized properties of NBD 

o  Additive property: If finitely many Xi’s are independently distributed as NBD 

(ri , π), then ∑ Xi is distributed as NBD (∑ri , π). 

o Limiting property:   The negative binomial distribution is better 

approximated by the Poisson Distribution in the following sense:  

, where  

λ = r. (π -1 – 1) and π = r/ (r + λ).  

o If Xr is a random variable following the negative binomial distribution with 

parameters r and π, then Xr is a sum of r independent variables following 

the NBD (1, π) with parameter π. As a result, Xr can be approximated by 

normal distribution for sufficiently large r. Dimensionally r = 40 to 50 may 

treated as large to use an overall Poisson approximation to explain 

binomial count data reasonably well. Beyond that, normal distribution 

could be invoked as a limiting case. In practice, observing incidence of 

counterfeiting may be enough to restrict below 20. Practical range found to 

be ranged between 4 to5, which needs to be firmed up based on empirical 

exercises. In case of real life problems practitioners adopt re-parametrised 

version of the classical X ~ NB D(r, π) model, which is expressed in terms 

of mean (m = r φ) and the shape parameter (r), or equivalently in terms of 

its mean and variance as may be denoted as RNBD (m,  m + m2/r). In 

such representation, r is termed as shape parameter and φ is called 

dispersion parameter. 

 

1.3.3.2 Re-parametrised versions of NBD: Following transformed versions of the 

above classical form of Negative Binomial distribution add to the interpretation power 

and model explanation when fitted to empirical data. The most common transformed 

versions are as under. 

 Conventionally a transformed version of negative binomial distribution is 

referred as Pascal distribution: If X ~ NB D(r, π) with X = 0, 1, 2,…., then Y = 
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X + r is termed as Pascal distribution, which denotes number of independent 

trials required to observe r ‘successes’. Its probability mass function is  

P (Y = n) = .
1

1













r

n
   r (1 -  )n-r ,     where n = r, r + 1, r + 2, …… 

 Commonly used transformed version of inverse or negative binomial 

distribution by the practitioners is in terms of two parameters namely mean (m 

= r φ) and the shape parameter (r). The original form of the NBD takes the 

following transformed version: 

P (X = x ) = .
1

1













r

rx
(m/(m+ r)) x . (1+m/r) – r, x  = 0, 1, 2,…….., m>0, r>0. This 

version24 is denoted as NBD (u, r) in terms of mean and shape parameter (r), 

which helps interpret the distribution in terms of dispersion (φ = u/r) and shape 

parameter (r) directly. When expressed in terms of mean (u) and the shape 

parameter (r), the mean and variance are: m = r. (1 -  )/  and variance = m + 

m2/r. So the dispersion parameter = m/r = (1/  -1). For fixed m (average number 

of failures before r-1 successes), dispersion and shape parameter is inversely 

related. Though some practitioners termed the reciprocal of the shape parameter 

(1/r) as dispersion parameter as commonly reflected from an average recurrent 

pattern in the randomly occurring sequences of ‘success’ and ‘failure’, dispersion 

is better represented by the underlying low chance ( ) of occurrence of a 

‘success’.  

 

1.4. Examples: (i) In case of a rifle range with an old gun that misfires 5 out of 6 

times, if one defines ``success'' as the event the gun fires; if X is the number of 

failures before the third success, X ~ NBD (3, 1/6). The probability that there are 10 

failures before the third success is given by  

 

The expected value and variance of X are  

 

As mentioned above, finite size Binomial distribution modeling and its large size but 

moderate π as approximated by Poisson distribution does not suit the occasion 

                                                   
24

 This alternative stylized form is used in current literature where variance is m (1 +m/r), where 

decreasing values of ‘r’ correspond to increasing dispersion for stable (fixed) value of ‘m’ (ref. Lloyd-
Smith, James O (2007)). 
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where it may be visibly evidenced that sample estimate of variance exceeds the 

sample mean. This leads to the problem of estimation in case of over-dispersed 

count data, which can be best understood from some real life example.  

(ii) A real life example: To understand the incidence of dispersion problem, let us cite 

an empirical example on observing aquatic invertebrates from selected samples of 

marine lives. The Table below gives the number of aquatic invertebrates on the 

bottom in 400 square units. (It is not time indexed but is an area based sampling). 

No. of aquatic invertebrates (x) 0 1 2 3 4 5 Total 

Frequency (f) 213 128 37 18 3 1 400 

 

The above Table is a typical presentation adopted for enumerating count data for 

tracking event like observing specific marine species per square units. Here, the 

experiment comprises dividing any select 400 square units of sea bed into 400 

squares, each of unit area size and observing number of invertebrates per square 

units. So f = 213 means so many unit-sized squares are observed to be without any 

invertebrates. Similar example of observing counterfeits over select time period (say 

52X4 =208 serially arranged weekly indexed four zones of the country) can be 

constructed. The fitting exercise with negative binomial distribution for the 

transformed version in terms of diffusion and shape parameters are described below. 

Estimated mean and variances are:    = 0.68 and  

= 0.81 

We will use this empirical data to fit NBD (m, r). The empirical exercise cited below is 

based on some alternative notations. Let ) be an estimate of 1/π, 

1 where  is an estimate of the dispersion parameter (φ). Then   

 and we get 0.81 = 0.68.     . 

 = 3.58 and the estimated probabilities (relative frequencies) are:  

  P(x=0) = q- r   and P (x+1) =  P (x). 
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[(i.e, P(x=0) = (1.19)-3.58 = 0.5365;  P(x=1) = (3.58/1) X (0.1596) X (0.5365) = 0.3065;   

P(x=2) = ((3.58+1)/2)X(0.1596)X(0.3065) = 0.1120; P(x=3) = ((3.58+2)/3)X(0.1596) 

X (0.1120) = 0.0332; P(x=4) = ((3.58+3)/4)X(0.1596)X(0.0332)=0.0087; P(x=5) = 

((3.58+4)/5)X(0.1596)X(0.0087)=0.0022 X  = 1). 

  

Estimated theoretical frequencies (N.B.D.): Nx=0 = 400 × P(x=0) = 400 × 0.5365 = 

214 Nx=1 = 400 × P(x=1) = 400 × 0.3065 = 123,   Nx=2 = 400 × P(x=2) = 400 × 0.1120 

= 45,  Nx=3 = 400 × P(x=3) = 400 × 0.0332 = 13,   Nx=4 = 400 × P(x=4) = 400 × 

0.0087 = 4.  Nx=5 = 400 × P(x=5) = 400 × 0.0022 = 1,  x = 400].                 

Testing goodness of fit: A problem that arises frequently in statistical work is the 

testing of comparability of a set of observed (empirical) and theoretical (N.B.D.) 

frequencies. To test the hypothesis of goodness of fit of the NBD to the empirical 

frequency distribution we calculate the  

value of χ2
 = , where fi = empirical frequencies and  = theoretical 

frequencies. The estimated χ2 - value is compared with the tabulated υ, a -value. 

The hypothesis is valid if X2 < υ, a, the hypothesis is discredited if X2 >  υ, a.   

(N.B: It should be noted that, since χ2 curve is an approximation to the discrete 

frequency function; care must be exercised that the χ2 test is used only when the 

approximation is good. Experience and theoretical investigations would justify 

whether the approximation is satisfactory or not. The following Table gives the 

empirical and theoretical frequencies of the previous example and the estimated χ2 

value.)  

Table: χ2
 - test of goodness of fit negative binomial distribution (NBD) to spatial 

distribution of aquatic invertebrates 

Number of aquatic 

invertebrates (x) 

Number of squares 

(fi - qi) 

 

Empirical 

frequencies (fi) 

Theoretical 

frequencies (qi) 

0 213 214 -1 0.0047 

1 128 123 +5 0.2033 

2 37 45 -8 1.4222 

3 18 13 +5 1.9231 

4 4 5 -1 0.2000 

    X2 =3.7533 

 The tabulated value of χ2
 ν=2, a=0.05 = 5.991         

(ν - degrees of freedom, ν = 5 classes - (2 estimated parameters + 1))  
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Since X2 < υ, a (i.e.,3.7533 < 5.991),  the hypothesis of goodness of fit is valid.  

(N.B:  A second estimate of (r) can be obtained as , r =  . 

Therefore,   = 3.56).  

 (iii) Pooling of centre-wise estimates:   It is expected that the parameters of negative 

binomial distributions may not be same across the regions. For examples diffused 

nature of counterfeits may vary from the States to States.  In such a case we have to 

resort to best available pooling method which is as under. Let for the i-th region 

(State/Union Territories. I = 1 to 35), Xi is the number of counterfeit notes per unit of 

a standard inspection checks in currency note inspection machine and the data get 

fit to negative binomial distribution with mean = ui and variance (Ui + Ui
2/r ). 

Therefore, if 
iX  ~ iiii ruuuRNBD /,(

2
 ) for I = 1 to 35, then the best linear unbiased 

estimator (BLUE) among the weighted average estimate is 
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,( iiiRNBD   ). Here classical model 

iX ~NBD (ri, πi) is re-parameterized in terms of mean u=ri Øi and shape parameter ri 

(number of successes before (n - ri) failures in n number of trials).  

 

2. Alternative estimation procedures25: The U.S. Treasury uses mainly two 

approaches namely the “parts-found-in-processing (PFP)” method and “the life-of-

counterfeits (LOC)” method. The simplest PFP approach extrapolates the number of 

counterfeits per million found by the monetary authorities during currency processing 

to the entire stock of currency. PFP extends the approach to reflect the discovery of 

counterfeits outside the authorities’ processing activities. In contrast, the LOC 

method extrapolates the flow of discovered counterfeits to the stock using estimates 

of the life of counterfeits in circulation. Bank of Canada attempted to adopt a revised 

method known as Chant’s “composite approach” developed by Chant (2004). These 

methods with their limitations, relevance and applicability in the Indian context are 

described below.   

 

                                                   
25

 Sourced from “Counterfeiting: A Canadian Perspective” by John Chant, John (2004), Bank of 

Canada Working Paper 2004-33. 
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2.1. PFP approach: The simplest PFP approach estimates the number of circulating 

counterfeits of any denomination, CD, as CD = RBIPPM X NICD. Here RBIPPM is the 

number of counterfeit notes detected per million notes processed by the central bank 

in the country and NICN is the outstanding stock of notes of denomination N. The 

PFP approach is somewhat simplistic and based on heuristics as the same would 

ideally have some correspondence to the actual stock of counterfeits only when, (i) 

detected counterfeits were found only during the central bank’s processing activities, 

and (ii) the notes processed by the bank were representative of outstanding currency 

with respect to the share of counterfeits. In this case, the bank’s detection rate for 

each denomination could be extrapolated to the stock of notes of that denomination 

to give an estimate of circulating counterfeits. It goes without saying that in a given 

period of time, all counterfeits floating in the system do not pass through central 

bank’s note processing system. Thus, PFP method could give rise to a high degree 

of underestimation as and when public role in probable handling of counterfeits 

become significant. It is very much true for large currency holding by the people at 

large. This shortcoming of the PFP method of treating all counterfeits as if, they were 

detected in the central bank’s note processing system, was subsequently adapted 

somewhat by the US Treasury to take into account the detections reported in other 

segments namely common public, banks or fake notes seized by police. The 

adapted version of PFP (PFP/) adds the proportion of counterfeits detected by the 

public to the proportion detected during processing by the monetary authority as CD 

= RBIPPM x s x NICD; s=TDD/BDD = (PDD+BDD)/BDD Here TDD represents total 

detections of counterfeit notes of certain denomination N; PDD, counterfeits (D 

denominated) held by the public; and BDD, detections of denomination D made by 

the central bank/banking system. TD, PD, and BD are all measured as number of 

detections per year. The PFP approach represents a lower-bound estimate because 

it does not include the counterfeits detected outside the central bank. The PFP/ 

approach represent a useful upper-bound estimate because it is based on the 

implausible assumption about the entire turnover of currency happening in private 

transactions so as to reveal probable extent of all the fake notes. However, though 

suffering from certain obvious limitations, it helps provide certain reporting of useful 

numbers, which when analysed in a disaggregated manner over a period of time, 

might provide a clue to certain dimensions of counterfeit detection ability in the 

system. It is of course argued in recent analyses of US FED and Treasury Office that 

it is well nigh impossible for bulk of counterfeit US dollar currency to remain in 

circulation without getting intercepted by the banking system or law enforcing 

machineries.  
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2.2. Life-of-counterfeit approach: Stock of circulating counterfeits can also be 

estimated using the “life-of counterfeit” (LOC) method. This method extrapolates the 

flow of discovered counterfeits to the total stock by using the estimated life of 

counterfeits. With this approach, the number of circulating counterfeits of certain 

denomination (D) is CD = LOCD x TDD where, LOCD represents the life of 

counterfeits, and TDD is the annual recovery of counterfeits of denomination D. The 

shortcoming of the LOC approach is that past history on the circulating life of 

counterfeits are meagre. Of course, by putting the year of printing in the genuine 

currency notes, data base on life of different denominations of currency notes issued 

in different series now would enable one to estimate average life of currency notes, 

which could proxy for similarly counterfeited notes.  

 

2.3. The composite method: The composite method (COMP) combines elements 

of both PFP and LOC to estimate the stock of circulating counterfeits. It draws on the 

LOC approach by using the information on the life of counterfeit notes. It then uses 

PFP, together with data on the public’s detection of counterfeits, to anchor estimates 

of the counterfeit stock on assumptions about the public efficiency in detecting 

counterfeits. The COMP method uses more data for its estimates than either the 

LOC or PFP approaches. These data include information about the life of 

counterfeits, the rate at which counterfeits are detected by the monetary authority 

during processing, and the annual flow of counterfeits detected outside the banking 

system. This approach explicitly recognizes that screening for counterfeits takes 

place both inside and outside the central bank. The public and financial institutions, 

in their transactions and processing of currency, are the sources of screening 

outside the monetary authority. The efficiency of screening when currency is 

transferred among individuals, businesses, and financial institutions indicates the 

proportion of counterfeits that originally existed in the batches of currency before 

they were sent to the central bank. The COMP method estimates the stock of 

outstanding counterfeits using three separate elements. (a) Any batch of currency 

processed by the central bank first turns over in a private sector transaction, where 

‘e’ of the counterfeits are detected before it is passed to the central bank, or where 

the remaining counterfeit notes are detected. If PPM (parts Per Million) is the original 

proportion of counterfeits in circulating currency, then PPM is described as PPM = 

RBIPPM/ (1-e) (0<e<1). Here RBIPPM is the proportion of counterfeits detected by 

the Reserve Bank. The first element expresses the relation between the stock of 

outstanding counterfeits, C, of any denomination (D)  and detections of counterfeits 

of that denomination, given the assumed efficiency of public screening, e, and the 

proportion of counterfeiting detected by central bank (RBIPPM), C (e)D = PPM x 

NICD = RBIPPM x NICD/(1-e).  
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It builds on the PFP method by allowing for different efficiencies of public detection. 

(b) The second element deals with the turnover of currency needed to account for 

the actual level of public detection of counterfeits during a year, given the efficiency 

of public screening. The estimated turnover, T of counterfeits of any denomination D 

is given by T (e)D = PDD/(e x PPM x NICD). Here, PDD is the detection of 

denomination D made by public per year. Here the denominator measures public 

detections per turnover of the circulating stock of denomination D. (c) The third 

element is estimated life of counterfeit notes, which is given by LOCD = C (e)D/TDD.                                                 

Data are readily available for RBIPPM, the proportion of counterfeiting detected by 

central bank and NICD. Each equation, however, requires information on unknowns 

in order to estimate C(e)D. The unknowns are e, LOCD and T (e)D. Values for TD and 

LOCD could be derived using knowledge about the turnover rate of the currency or 

the life of counterfeits. 

 

2.4 Method for estimating life of counterfeits: Average life of counterfeits can be 

estimated using the recovery data of high quality counterfeit notes circulating at 

different time points.  The rate of decay of the stock of counterfeits may be derived 

as follows. The stock of counterfeits at any time t periods after the series ceased to 

be introduced, Ct, can be represented as )(.0 dtExpCCt  , where C0 is the where Co 

is the stock at the time new counterfeits ceased to be introduced, and d is the rate of 

decay of the counterfeit stock. But since the rate of decay, tt Cdr . ; 

)(.0 dtExprrt  . Thus, the decay rate of circulating counterfeits can be estimated by 

the equation: dtrr  0lnln . The lifespan of counterfeits of other denominations 

may be obtained using the lifespan data of notes of that denomination. These data, 

together with the assumption that turnover and currency life are inversely 

proportional, give estimates of the turnover rates for each denomination. The 

estimated turnover rates are substituted into the second equation in the above set of 

five equations to generate relevant estimates of ‘e’ for each denomination. To avoid 

complexity, one can start with some hypothesized estimate of LOC, which may 

periodically be checked with empirical evidences and judgment, based on newly 

configured data base on year of issuances and recording the same from counterfeits 

detected in the recent period.   

 




