RbiSearchHeader

Press escape key to go back

Past Searches

Theme
Theme
Text Size
Text Size
S2

RbiAnnouncementWeb

RBI Announcements
RBI Announcements

Asset Publisher

127630173

RBI WPS (DEPR): 09/2024: State-Level Inflation Forecasts for India: Based on Data from Inflation Expectations Survey of Households

Press Release

RBI Working Paper Series No. 09

State-Level Inflation Forecasts for India: Based on Data from Inflation Expectations Survey of Households

Purnima Shaw and R. K. Sinha@

Abstract

1The Inflation Expectations Survey of Households (IESH) of the Reserve Bank of India (RBI) completed its 90th round in March 2024. Using the historical series from this survey, we provide state-level inflation forecasts, which can help in better understanding of inflation dynamics. Deviating from the conventional regression-based forecasting, this paper proposes a new approach to modelling inflation expectations, which not only uses centre-wise survey data and state-wise inflation data but also redistributes the inflation expectation of respondents suitably to gain further precision. For most of the states, the analysis suggests a noticeable reduction in the quantum of nowcast/ forecast errors in state-level nowcasts/ forecasts obtained using the proposed methodology when compared with the errors of the survey forecasts, bias-adjusted survey forecasts and linear regression-based forecasts.

JEL Classification: D84, E31

Keywords: Inflation, inflation expectations, percentile, probability distribution function

Introduction

The information on inflation expectations is widely used by central banks for monetary policy making. Several central banks conduct high-frequency surveys to collect information on short to medium-term inflation perceptions. The Reserve Bank of India (RBI) conducts Survey of Professional Forecasters (SPF), Industrial Outlook Survey (IOS), Services and Infrastructure Outlook Survey (SIOS), Consumer Confidence Survey (CCS) and Inflation Expectations Survey of Households (IESH).

In this paper, we focus on inflation expectations of households collected through IESH. IESH is conducted across approximately 6,000 respondents in 19 urban centres/ cities. The survey captures both qualitative and quantitative inflation perceptions of households. However, we restrict our analysis only to quantitative information in the paper, which is sought in the survey over three time-horizons: (i) current inflation perception, (ii) three-month ahead inflation expectations and (iii) one-year ahead inflation expectations. The frequency of IESH is six times per annum, aligning with the frequency2 of the bi-monthly Monetary Policy Committee meetings of the RBI.

Econometric methods are commonly used for nowcasting and forecasting actual inflation based on inflation expectations data. Recently, Sinha (2023) demonstrated the potential use of statistical distributions to explain inflation and inflation expectations and linking them using suitable functions. The paper applied the method to all-India inflation and inflation expectations of all the survey centres together.

Given India’s geographical diversity, each state differs in consumption patterns, which can result in variations in inflation and inflation expectations. Other factors like inter-state transportation costs, differences in state tax regimes, varying freight costs, geographical distances, and state-level food supply management can also contribute to inflation variability. Hence, forecasting all-India level inflation may overlook the important state-specific information.

In this paper, we extend Sinha’s (2023) work by applying it to centre-wise data of inflation and inflation expectations and provide state-level inflation nowcasts and forecasts. Additionally, to better analyse the round number preferences of the respondents in IESH, we propose a novel approach of decomposing inflation expectations into discrete and continuous data.

The paper is divided into five sections. The second section reviews the relevant literature. The third section provides the methodology to split the datasets into discrete and continuous components distinctly and map these data with the inflation data to obtain state-level inflation nowcasts and forecasts. The numerical demonstration, illustrated in the fourth section, based on the proposed methodology evaluates the performance of the estimates in comparison with the actual inflation numbers. The last section concludes and provides a direction for future studies on the subject.

II. Literature Review

Inflation expectations generally tend to be higher than the realised inflation, a trend observed globally, including in advanced economies. Abildgren and Kuchler (2021) refer to this overestimation as the “inflation perception conundrum”. The upward bias in households’ reporting of inflation perceptions and expectations may not be a major concern if it is consistent, and econometric models can filter this out when forecasting actual inflation. However, the concern becomes more serious when the bias is inconsistent and fluctuates unpredictably over time, without being explained by business cycles or economic outlooks.

Recently, Singh et al. (2024) conducted a study on the nature of bias in inflation expectations in India and in other economies and found that the characteristics of the data in India were similar to those in other economies. They also explored another potential use of the survey - its relation with households’ future savings - and established a link.

Inflation expectations can vary across households based on their socio-economic and demographic characteristics [Jonung (1981), Souleles (2004), Malmendier and Nagel (2016), Goyal and Parab (2019), Goldfayn-Frank and Wohlfart (2020) and Shaw (2024)]. The observed probability distributions of inflation perceptions and expectations tend to reveal peaks at specific points, usually in multiples of five, indicating the round number preference of respondents when expressing their opinions. Some recent studies, such as Krifka (2009), Binder (2017) and Reiche and Meyler (2022), have considered this behaviour an indicator of uncertainty regarding inflation. Krifka (2009) described this through a principle, namely, Round Numbers Round Interpretation Principle. According to this principle, short and simple numbers are related to low accuracy, whereas long and complex numbers correspond to higher accuracy. Binder (2017) developed an uncertainty index based on the frequency of round numbers, suggesting that a number is considered uncertain if it is divisible by five. Reiche and Meyler (2022) found that this uncertainty increases during the periods of economic instability.

The probability distribution of a stochastic process is given by the probability that a realised value of the variable falls in a specified range. An empirical probability distribution of the stochastic series is obtained by finding the observed frequency distribution. Researchers have also explored the fitting of probability distributions to time series data. For instance, Osborne (1959) analysed the probability distribution of share price changes using the New York Stock Exchange data.3 Later, Praetz (1972) extended Osborne’s (1959) theory by incorporating the dynamic nature of volatility. More recently, Qiao et al. (2022) proposed a distribution coupling the distribution of extreme values of time series data with a distribution for frequently occurring values.

Departing from conventional regression-based nowcasting and forecasting techniques, Sinha (2023) fitted statistical probability distributions to inflation and inflation expectations data for India, providing inflation forecasts by relating the two distributions. In the current paper, the approach of Sinha (2023) is utilised and generalised to map the datasets of inflation and inflation expectations after fitting them separately with suitable probability distributions in each of the centres.

To manage centre-wise data, which tend to be uneven due to respondents’ preference for round numbers, a novel method is deployed. This method reduces additional frequency observed at peaks associated with round numbers by removing the interpolated frequencies based on the frequencies of the neighbouring points. In doing so, the probability density function is adjusted for better fitting, and the removed values are reassembled into a new discrete dataset representing a probability mass function. The detailed methodology is described in the following section.

III. Methodology

While upward bias (definition provided in Table A3) in the inflation expectations data when compared with the realised Consumer Price Index (CPI) – Urban inflation (CPI-U) figures is well-accepted, it may be of interest to look at the centre-wise biases (Tables 1 to 3). This analysis is performed with the assumption that the centre-wise inflation expectations represent the corresponding state’s urban inflation forecasts. These data indicate that the biases not only vary widely across the states, but they also fluctuate considerably across time. Thus, the biases in the centre-wise inflation expectations data appear to be dynamic. Hence, for deriving the inflation nowcasts and forecasts using the survey data, a centre-wise analysis seems more relevant.

Table 1: Inflation Perceptions as Nowcasts and Realised CPI-U Inflation
State Maximum Bias Minimum Bias State Maximum Bias Minimum Bias
Gujarat 12.0 0.7 West Bengal 10.0 -0.8
Karnataka 5.3 -1.9 Uttar Pradesh 8.8 -1.5
Madhya Pradesh 6.8 -0.1 Maharashtra (using Mumbai) 7.6 1.2
Odisha 10.1 -1.6 Maharashtra (using Nagpur) 10.7 -0.2
Tamil Nadu 9.2 0.2 Bihar 7.8 -3.2
Delhi 8.9 -0.1 Kerala 8.4 -0.7
Assam 11.4 -2.8 Chandigarh 8.5 -1.3
Telangana 7.3 -0.7 Jharkhand 6.3 -1.9
Rajasthan 7.9 -1.6 Chhattisgarh 8.4 -1.5
Note: The survey centre Jammu is added to the list of IESH centres from March 2021 round onwards. Hence, due to insufficient data, the centre is omitted from this analysis.
Source: Authors’ calculations.
 
Table 2: Three-month ahead Inflation Expectations as Forecasts and Realised CPI-U Inflation
State Maximum Bias Minimum Bias State Maximum Bias Minimum Bias
Gujarat 12.7 1.8 West Bengal 9.6 -0.7
Karnataka 7.5 -1.5 Uttar Pradesh 11.1 0.5
Madhya Pradesh 8.5 0.9 Maharashtra (using Mumbai) 8.8 1.4
Odisha 11.9 -1.5 Maharashtra (using Nagpur) 10.8 0.9
Tamil Nadu 9.0 2.1 Bihar 10.4 -2.6
Delhi 9.4 -0.6 Kerala 6.9 -0.4
Assam 12.3 -4.0 Chandigarh 9.3 -0.7
Telangana 8.7 -1.3 Jharkhand 6.7 -1.1
Rajasthan 8.5 -0.7 Chhattisgarh 10.8 -1.6
Note: The survey centre Jammu is added to the list of IESH centres from March 2021 round onwards. Hence, due to insufficient data, the centre is omitted from this analysis.
Source: Authors’ calculations.
 
Table 3: One-Year Ahead Inflation Expectations as Forecasts and Realised CPI-U Inflation
State Maximum Bias Minimum Bias State Maximum Bias Minimum Bias
Gujarat 15.4 2.0 West Bengal 11.2 -1.2
Karnataka 8.3 -1.1 Uttar Pradesh 12.3 0.6
Madhya Pradesh 10.9 0.3 Maharashtra (using Mumbai) 8.7 -0.6
Odisha 12.7 -1.3 Maharashtra (using Nagpur) 12.9 -1.3
Tamil Nadu 13.3 2.4 Bihar 13.7 -4.5
Delhi 9.9 0.8 Kerala 11.8 -0.1
Assam 13.1 -5.3 Chandigarh 14.0 0.2
Telangana 9.6 0.1 Jharkhand 8.7 -3.0
Rajasthan 10.2 -2.5 Chhattisgarh 8.3 -1.6
Note: The survey centre Jammu is added to the list of IESH centres from March 2021 round onwards. Hence, due to insufficient data, the centre is omitted from this analysis.
Source: Authors’ calculations.

We then study the state-wise official inflation data and centre-wise survey data by fitting appropriate probability distributions to them separately, and then linking the two through fitted distributions. Fitting probability distributions to the inflation and survey data facilitate a complete study of the data characteristics, including moments, skewness, kurtosis, etc.

Let x be a real variable denoting the official inflation series of a state for a finite number of time periods T. While the aggregate inflation data may follow standard probability distribution or a mixture of two standard probability distributions (Sinha, 2023), the state-wise data are expected to display greater variability. As a result, to fit a probability distribution to the state-wise official inflation series, several continuous probability distributions are fitted to the data and it may be better to consider that x is fitted with a mixture of say, n probability distributions.

The practice of using mixture probability distributions is popular in the literature. Johnson et al. (1994) described a theory on deriving a two-piece Normal distribution in which half of the pieces of two different Normal distributions with the same mode, but different standard deviations were joined together. Blix and Sellin (1998) used a two-piece Normal distribution to incorporate asymmetric risks to forecasts. Banerjee and Das (2011) also followed the same to apply in the Indian case. Sinha (2023) refers to literature like Cooray and Ananda (2005), Scollnik (2007), Ciumara (2006), Scollnik and Sun (2012), Nadarajah and Bakar (2014) and Frigessi et al. (2002) to fit a set of two probability distributions to the inflation data in India. The probability distribution function of x may, thus, be denoted as,

We estimate the probabilities for each of the inflation brackets using twelve probability distributions and choose the best fit for each bracket. In such a case, calculating the goodness of fit measure may not be of much relevance.

The distribution function of x for any real number "a" is defined as,

Here, F(a) denotes the proportion of x-values in the finite time frame not exceeding a real number "a".

An important characteristic of the inflation sentiment data in India is the respondents’ preference for round numbers in polling their expectations (Sinha, 2023). This characteristic is expected to be even more prominent in the centre-wise data. This makes the centre-wise survey data uneven which makes the task of fitting suitable probability distribution extremely difficult. Hence, in fitting a suitable probability distribution to the state-wise inflation expectations survey dataset, an approach similar to that in fitting probability distribution to the official inflation dataset may not be appropriate. For the ease of handling the data, it is intended to classify the survey data into two portions in which the first portion would only display the dataset due to digit preference and the second portion would consist of the remaining dataset displaying a much smoother distribution. Although the survey data is continuous, the first portion, due to digit preference, is discrete, and the remaining portion remains continuous.

To perform this data segregation, we consider the survey data for a finite time period. As per the survey questionnaire, the quantitative inflation sentiments of consumers are collected in the range of (<1%,1−<2%,…,15−<16%,≥16%). Respondents who answer “≥16 per cent” are advised to provide the exact inflation perception/ expectation number. Let y be a real variable, taking values yk representing the inflation sentiment of the consumers. The variable yk takes value labels in the set V = (< 1%, 1−< 2%,…,j,…15−< 16%, 16%, 17%, 18%,….) in the survey data. As observed from the IESH data, yk is allowed to take decimal values. Further, this is a variable indicating the sentiments on inflation, which itself is a continuous variable. Hence, it can be safely concluded that yk is a continuous variable. Let the frequency distribution of this variable be represented as (yk,fk), where fk is the frequency of yk observed from the data of a survey centre. Now, to segregate the frequency distribution of the original continuous data into discrete and continuous data at first, gk is computed as-

Here, the frequency distribution (yk,gk) denotes the new frequency distribution of continuous data on yk. The frequency values gk are calculated with the logic that at every yk, wherever there is a peak in frequency due to consumers’ preference for certain digits, the frequency for the continuous data is estimated by interpolation method. This segregation from continuous raw survey data to discrete and continuous survey data results in a much smoother distribution for the continuous data, thus making it much easier to fit appropriate probability distributions.


Now, once f(x), its related distribution function F(a) at a, h(yp) and f(yk) and the estimates of the related parameters of the fitted distributions are available, the idea now is to revert the estimated probabilities of the survey figures to the corresponding percentiles of the distribution function of the official inflation data. The statistical moments of the two distributions are very different and mapping the two distributions facilitates a correspondence between the two. Various Copula functions can be applied for this mapping. Sinha (2023) explains direct and indirect mapping procedures and executes the direct mapping method. In this paper, we explore finding the quantile of the inflation distribution for a given probability in the distribution for inflation expectations as follows:

The survey-based expectations are biased towards larger numbers as compared to the official inflation figures. Hence, it may be assumed that the distribution of the inflation expectations is shifted towards the right of the distribution of the official inflation. In the survey distribution, if the probability of expecting a higher inflation number increases, then the corresponding percentile of the inflation data will be towards a number higher than the previously realised inflation figure. As distributions of the official inflation data and the survey data are widely different (apparent from the bias in the survey data), a mapping of the distributions is expected to remove the bias in the survey data and present refined inflation forecasts, namely, Pp from the discrete5 survey data, Qk from the continuous survey data and Pp + Qk as a forecast obtained from the combined survey data.

We observe that the discrete survey data on inflation perceptions, three-month ahead and one-year ahead inflation expectations contain more information on the realised official inflation figures than the continuous survey data on the inflation sentiments. Taking this into account, the proposed inflation estimates are restricted to Pp. We also consider the estimates obtained from the sum Pp + Qk as alternative inflation estimates.

Usually, time-varying coefficients are estimated in econometric models for nowcasting and forecasting inflation. This is important for updating the nowcasts and forecasts with the recent changes in the economy. Accordingly, with the addition of new datasets on inflation expectations (from survey rounds) and realised CPI-U inflation, we update the probability distributions of both datasets by following the same method of finding the best-fit distribution out of 12 distributions for each of the data brackets. Thus, crucial information on the time-varying nature of both datasets is retained in the derived nowcasts and forecasts. The distributions to be studied are kept fixed throughout the paper (one may add other distributions to the set and explore for better fit), thus eliminating the possibility of subjectivity in distribution fitting, if any.

IV. Nowcasting/ Forecasting State-level Urban Inflation

To examine the applicability of the above methodology, at first, the state-wise CPI-U6 general7 inflation data8, pertaining to states9 in which the IESH is conducted, is considered from January 2014 to December 2023. The state-wise IESH unit-level data10, are used from December 2013 to September 2023. The information on exact inflation perceptions and expectations (for responses labelled '≥16 per cent') are available in a consistent manner from the December 2013 onwards.

Our objectives are to use the inflation perceptions’ survey data to nowcast the CPI-U inflation of the survey period and also to use the three-month ahead and one-year ahead inflation expectations’ survey data to forecast the CPI-U inflation of the months which are three-month ahead and one-year ahead of the survey month, respectively. To perform this exercise, available information on the CPI-U inflation of the months just prior to the survey month is used to compute the out-of-sample inflation forecasts. The out-of-sample nowcast estimates and two types of forecast estimates are obtained for 20 months each. To obtain out-of-sample nowcasts and forecasts of CPI-U inflation using the survey data, mapping of the survey months and nowcast and forecast months is performed as shown in Table 5.

Table 5: Mapping of Survey Periods CPI-U Nowcasting/ Forecasting Months
Current Three-months ahead One-year ahead
Survey Month CPI-U Nowcast Month Survey Month CPI-U Forecast Month Survey Month CPI-U Forecast Month
July 2020 July 2020 July 2020 Oct. 2020 Nov. 2019 Nov. 2020
Sept. 2020 Sept. 2020 Sept. 2020 Dec. 2020 Jan. 2020 Jan. 2021
Nov. 2020 Nov. 2020 Nov. 2020 Feb. 2021 Mar. 2020 Mar. 2021
Jan. 2021 Jan. 2021 Jan. 2021 April 2021 May 2020 May 2021
Mar. 2021 Mar. 2021 Mar. 2021 June 2021 July 2020 July 2021
May 2021 May 2021 May 2021 Aug. 2021 Sept. 2020 Sept. 2021
July 2021 July 2021 July 2021 Oct. 2021 Nov. 2020 Nov. 2021
Sept. 2021 Sept. 2021 Sept. 2021 Dec. 2021 Jan. 2021 Jan. 2022
Nov. 2021 Nov. 2021 Nov. 2021 Feb. 2022 Mar. 2021 Mar. 2022
Jan. 2022 Jan. 2022 Jan. 2022 April 2022 May 2021 May 2022
Mar. 2022 Mar. 2022 Mar. 2022 June 2022 July 2021 July 2022
May 2022 May 2022 May 2022 Aug. 2022 Sep 2021 Sep 2022
July 2022 July 2022 July 2022 Oct. 2022 Nov. 2021 Nov. 2022
Sept. 2022 Sept. 2022 Sept. 2022 Dec. 2022 Jan. 2022 Jan. 2023
Nov. 2022 Nov. 2022 Nov. 2022 Feb. 2023 Mar. 2022 Mar. 2023
Jan. 2023 Jan. 2023 Jan. 2023 April 2023 May 2022 May 2023
Mar. 2023 Mar. 2023 Mar. 2023 June 2023 July 2022 July 2023
May 2023 May 2023 May 2023 Aug. 2023 Sept. 2022 Sept. 2023
July 2023 July 2023 July 2023 Oct. 2023 Nov. 2022 Nov. 2023
Sept. 2023 Sept. 2023 Sept. 2023 Dec. 2023 Jan. 2023 Jan. 2024
Sources: RBI, MOPSI and Authors’ calculations.

We then examine the probability distribution of the CPI-U inflation series of each of the 18 states separately. On an experimental basis, the distribution-fitting exercise is initially conducted for a period of twelve months, i.e., from September 2022 to August 2023. Chart A1 displays these distributions of the CPI-U inflation data. These show that the distributions are somewhat smooth only for the states of Delhi, Assam, Bihar and Kerala. For the rest of the states, no single standard distribution can fit well into the observed probability distributions. The modal inflation lies in the range of 4 per cent to 7 per cent in most of the states. 17 per cent and 25 per cent of the inflation values in the case of Delhi and Chhattisgarh, respectively are less than or equal to 2 per cent; for the rest of the states under study for the mentioned period, there is no observation equal to or less than 2 per cent. However, more than half of the inflation values lie beyond 6 per cent in the case of Gujarat, Madhya Pradesh, Tamil Nadu, Telangana, Uttar Pradesh and Maharashtra.

To fit distribution(s) to the CPI-U inflation data of each of the states under study, following Sinha (2023), 12 distributions, namely, Johnson SB, Cauchy, Burr, Laplace, Lognormal, Exponential, Gamma, Logistic, Weibull, Inverse Gamma, Loglogistic and Inverse Weibull are experimented. For each inflation bracket, the best-fit distribution (the distribution for which the fitted probability is nearest to the observed probability) is taken (Table A1).

It is observed that for each of the 18 states under study, a mixture of probability distributions fit the data well. Now, following equations (1) and (2), for each state, the estimated probability distribution functions are proportioned into their respective weights and stitched together so that the final probability distribution function consisting of a mixture of probability distribution functions adds up to unity (Chart A1).

Now, it is intended to fit distributions to the centre-wise inflation perceptions’ and expectations’ data of the IESH. First, a distribution is fitted to state-wise inflation expectations’ data of the September 2023 survey round. Due to the digit preferences of respondents in polling their inflation sentiments (observed as long spikes in observed frequencies for certain numbers in Chart A2) and using equations (4) and (5) and Table 4, the observed frequency distribution is broken into discrete and continuous frequency distributions. Table 6 provides the share of estimated discrete frequencies out of the total frequencies in each of the survey centres. The shares are comparatively higher in the perceptions about the current inflation than in the expectations about the future inflation over three months and one year. The shares are less than 50 per cent.

Table 6: Percentage of Discrete Responses in IESH September 2023 Survey Round
Survey Centre Inflation Perceptions Three-month ahead Inflation Expectations One-year ahead Inflation Expectations
Ahmedabad 47.2 37.2 36.7
Bangalore 34.9 26.0 26.3
Bhopal 38.8 30.9 32.4
Bhubaneswar 36.8 21.5 27.7
Chennai 49.9 35.8 39.9
Delhi 36.4 28.8 28.0
Guwahati 42.0 37.5 34.4
Hyderabad 32.1 24.3 30.0
Jaipur 36.5 27.2 27.4
Jammu 50.0 42.5 40.0
Kolkata 42.7 36.5 34.0
Lucknow 37.3 27.6 27.7
Mumbai 31.8 25.7 25.6
Nagpur 31.8 21.3 22.2
Patna 23.6 14.0 18.7
Thiruvananthapuram 47.4 32.4 24.7
Chandigarh 28.6 18.5 18.4
Ranchi 17.7 12.9 15.4
Raipur 23.8 15.7 16.7
Sources: RBI and Authors’ calculations.

In the case of the discrete frequency distribution segregated from the survey frequency distribution, Poisson distribution and Negative Binomial distributions are fitted. For the September 2023 survey round, the Poisson distribution fits the data well. The estimated values of the parameter λ for the fitted Poisson(λ) distribution are provided in Table A2. The continuous data is also fitted with appropriate probability distributions using equations (6) and (7). Frequency peaks are also observed at <1 per cent response option for the one-year ahead inflation expectations but not in the three-month ahead inflation expectations.

This reflects consistency in the responses because for respondents who expect prices to remain the same/ decline (responses to qualitative questions) in the next year as compared to the current period (about 12 per cent in the study period), the quantitative inflation expectations must (by definition) be <1 per cent (about 8 per cent in the study period) as no price change (price decrease) over a year implies zero inflation (deflation). So, this phenomenon in the responses is a required criterion as per the structure of the questionnaire, rather than being noise in the data, as is the case with digit preference.

With this logic, the frequency peaks at <1 per cent in the one-year ahead inflation expectations are retained. The state-wise observed frequency distributions and fitted probability distributions for both the discrete and continuous data portions of the one-year-ahead inflation expectations in the September 2023 survey round are displayed in Chart A3. From Charts A2 and A3, it is clear that frequent high spikes in the observed frequency distributions of the inflation expectations are now separated into discrete data, and the remaining data are comparatively smoother, thus making the task of fitting distributions easier.

Now, following the above procedure shown on a sample basis for fitting distributions to 12 months of CPI-U inflation data and one survey round of IESH data, the distribution fitting exercises are performed for each survey round starting from July 2020 to September 2023. For each of these survey rounds, the corresponding 12 months of CPI-U inflation data are fitted with appropriate probability distribution functions. To nowcast the CPI-U of each CPI state under study for the survey month by using the IESH survey data of a single round and the CPI-U inflation data available for the past 12 months (based on the logic that individuals usually poll inflation sentiments based on past experiences), equations (3), (8) and (9) are used. These estimates are named here as ‘1 IESH 12 CPI-U’. Using the same data, forecasting the CPI-U inflation of each CPI state under study for the next three months and for the next year is also done. Chart A4 displays the three-months ahead forecast of CPI-U inflation from October 2020 to December 2023 for each state.

To check the robustness of the proposed methodology, the nowcasting and forecasting exercises are then repeated by utilising the following data combinations:

i. IESH data pertaining to a single survey round and previous six months’ CPI-U inflation data ‘1 IESH 6 CPI-U’: The logic for such a selection is that individuals usually poll inflation sentiments based on the experiences in the past few months.

ii. All IESH data from December 201311 round onwards and CPI-U inflation data of all months from the beginning, i.e., from January 2014 onwards ‘All IESH All CPI-U’: The logic for such a selection is to prevent any loss of information in the survey and the inflation datasets.

iii. All IESH data and previous twelve months’ CPI-U inflation data ‘All IESH 12 CPI-U’: This utilises the entire survey data but considers the inflation data from the last year using the logic that individuals usually poll inflation sentiments based on past experiences.

iv. All IESH data and previous six months’ CPI-U inflation data ‘All IESH 6 CPI-U’: This utilises the entire survey data but considers the recent inflation data using the logic that individuals usually poll inflation sentiments based on the recent experiences.

The CPI-U inflation nowcasts and forecasts are separately derived using the discrete survey data (D) and by adding the estimates of discrete and continuous survey data (D+C). These are then compared with the realised CPI-U12 inflation figures, and the performances of the estimates are gauged by using the error measure Theil’s U given below in equation (10):

where, Ft is the forecast for time period t, At is the actual at time period t and T is the number of time periods. Lower the value of Theil’s U, the closer is the nowcast/ forecast to the realised figure. The performances of the inflation perceptions (considered as one of the benchmark nowcasts) and expectations (considered as one of the benchmark forecasts) from the IESH data are also measured based on above methodology. Apart from this, another type of nowcasts and forecasts are considered here by removing the bias from the survey estimates as shown in equation (11).

where, ETs is the revised forecast of the Tth month for the sth state derived from the survey estimate, eTs is the inflation perception/ expectation estimate of the Tth month for the sth state from the survey and Ais is the realised official inflation figure of the ith, i = 1,2,…,T, month for the sth state. Furthermore, out-of-sample nowcasts and forecasts based on simple linear regression (named as ‘Reg-based’) of the centre-wise survey-based mean estimates on the corresponding state-wise CPI-U general inflation figures are also taken as benchmark estimates for the comparison purposes based on the performances of nowcasts and forecasts. These estimates are named here as ‘IESH-BA’13. Tables 7(I), 7(II) and 7(III) display the performances of the nowcasts and forecasts14 based on Theil’s U values.

Table 7(I): Performances of Nowcasts: Values of Theil’s U for Nowcasts vis-à-vis Realised Inflation Values
Data GJ KT MP OD TN DL AS
IESH 0.275 0.242 0.151 0.241 0.238 0.418 0.266
IESH-BA 0.339 0.170 0.171 0.194 0.175 0.240 0.267
Reg-based 0.197 0.088 0.156 0.182 0.152 0.176 0.208
1 IESH 12 CPI-U D 0.125 0.111 0.115 0.163 0.111 0.198 0.199
D+C 0.236 0.238 0.273 0.261 0.263 0.288 0.325
1 IESH 6 CPI-U D 0.125 0.113 0.099 0.165 0.105 0.181 0.169
D+C 0.241 0.204 0.247 0.234 0.208 0.254 0.322
All IESH All CPI-U D 0.149 0.102 0.164 0.203 0.162 0.159 0.299
D+C 0.161 0.187 0.212 0.188 0.189 0.272 0.233
All IESH 12 CPI-U D 0.143 0.111 0.120 0.152 0.107 0.196 0.165
D+C 0.199 0.247 0.253 0.211 0.244 0.291 0.299
All IESH 6 CPI-U D 0.138 0.110 0.110 0.165 0.105 0.182 0.158
D+C 0.196 0.202 0.235 0.215 0.195 0.260 0.294
 
Data TL RJ JK WB UP MHM MHN
IESH 0.192 0.296 0.314 0.261 0.273 0.238 0.206
IESH-BA 0.125 0.199   0.223 0.111 0.141 0.130
Reg-based 0.149 0.177   0.204 0.114 0.155 0.164
1 IESH 12 CPI-U D 0.115 0.145 0.108 0.152 0.116 0.129 0.116
D+C 0.278 0.242 0.288 0.259 0.249 0.235 0.248
1 IESH 6 CPI-U D 0.192 0.144 0.087 0.132 0.114 0.117 0.106
D+C 0.284 0.241 0.257 0.263 0.237 0.258 0.268
All IESH All CPI-U D 0.223 0.150 0.136 0.304 0.145 0.161 0.161
D+C 0.222 0.204 0.222 0.225 0.180 0.218 0.220
All IESH 12 CPI-U D 0.165 0.148 0.101 0.156 0.110 0.170 0.169
D+C 0.288 0.165 0.282 0.238 0.220 0.234 0.235
All IESH 6 CPI-U D 0.177 0.154 0.091 0.149 0.132 0.121 0.122
D+C 0.266 0.203 0.250 0.262 0.224 0.249 0.249
                 
Data BR KL CH JH CHH AC  
IESH 0.160 0.105 0.358 0.175 0.293 0.234  
IESH-BA 0.225 0.385 0.144 0.172 0.220 0.100  
Reg-based 0.201 0.106 0.132 0.163 0.190 0.113  
1 IESH 12 CPI-U D 0.151 0.095 0.110 0.139 0.169 0.083  
D+C 0.271 0.289 0.259 0.310 0.300 0.215  
1 IESH 6 CPI-U D 0.128 0.094 0.112 0.147 0.166 0.083  
D+C 0.269 0.258 0.243 0.298 0.282 0.194  
All IESH All CPI-U D 0.133 0.103 0.088 0.129 0.151 0.133  
D+C 0.207 0.202 0.221 0.261 0.237 0.140  
All IESH 12 CPI-U D 0.145 0.079 0.089 0.148 0.153 0.087  
D+C 0.295 0.240 0.253 0.332 0.277 0.181  
All IESH 6 CPI-U D 0.124 0.141 0.084 0.135 0.154 0.094  
D+C 0.277 0.225 0.223 0.305 0.266 0.162  
Sources: RBI, MOSPI and Authors’ calculations.
 
Table 7(II): Performances of Three-month ahead Forecasts: Values of Theil’s U for Forecasts vis-à-vis Realised Inflation Values
Data GJ KT MP OD TN DL AS
IESH 0.322 0.298 0.207 0.297 0.308 0.462 0.322
IESH-BA 0.288 0.209 0.167 0.188 0.113 0.264 0.209
Reg-based 0.172 0.101 0.156 0.186 0.122 0.189 0.171
1 IESH 12 CPI-U D 0.145 0.127 0.122 0.164 0.115 0.244 0.225
D+C 0.220 0.205 0.253 0.241 0.259 0.307 0.363
1 IESH 6 CPI-U D 0.147 0.151 0.141 0.189 0.123 0.233 0.222
D+C 0.227 0.202 0.255 0.218 0.200 0.281 0.374
All IESH All CPI-U D 0.218 0.137 0.194 0.258 0.199 0.188 0.326
D+C 0.181 0.173 0.219 0.212 0.184 0.264 0.266
All IESH 12 CPI-U D 0.181 0.127 0.120 0.177 0.128 0.245 0.229
D+C 0.185 0.227 0.229 0.199 0.245 0.317 0.364
All IESH 6 CPI-U D 0.195 0.157 0.134 0.209 0.141 0.230 0.249
D+C 0.212 0.222 0.232 0.208 0.189 0.280 0.372
 
Data TL RJ JK WB UP MHM MHN
IESH 0.247 0.308 0.337 0.327 0.311 0.284 0.273
IESH-BA 0.109 0.182   0.149 0.101 0.106 0.077
Reg-based 0.132 0.156   0.156 0.097 0.133 0.134
1 IESH 12 CPI-U D 0.133 0.169 0.165 0.171 0.142 0.163 0.151
D+C 0.262 0.235 0.318 0.279 0.238 0.238 0.250
1 IESH 6 CPI-U D 0.262 0.226 0.154 0.169 0.138 0.152 0.145
D+C 0.301 0.291 0.289 0.288 0.235 0.261 0.268
All IESH All CPI-U D 0.355 0.171 0.193 0.293 0.156 0.192 0.197
D+C 0.312 0.232 0.262 0.199 0.185 0.222 0.222
All IESH 12 CPI-U D 0.170 0.151 0.151 0.175 0.125 0.201 0.198
D+C 0.269 0.160 0.306 0.268 0.206 0.243 0.237
All IESH 6 CPI-U D 0.285 0.185 0.149 0.179 0.154 0.156 0.163
D+C 0.306 0.245 0.283 0.284 0.227 0.247 0.249
 
Data BR KL CH JH CHH AC  
IESH 0.191 0.200 0.377 0.199 0.323 0.291  
IESH-BA 0.214 0.189 0.174 0.146 0.200 0.072  
Reg-based 0.196 0.074 0.172 0.137 0.187 0.090  
1 IESH 12 CPI-U D 0.152 0.097 0.127 0.123 0.192 0.084  
D+C 0.285 0.286 0.241 0.316 0.318 0.193  
1 IESH 6 CPI-U D 0.141 0.091 0.137 0.123 0.194 0.098  
D+C 0.281 0.249 0.239 0.305 0.292 0.175  
All IESH All CPI-U D 0.147 0.105 0.120 0.116 0.176 0.159  
D+C 0.202 0.231 0.222 0.266 0.233 0.129  
All IESH 12 CPI-U D 0.151 0.090 0.097 0.131 0.179 0.101  
D+C 0.281 0.256 0.231 0.325 0.290 0.163  
All IESH 6 CPI-U D 0.134 0.151 0.122 0.121 0.171 0.116  
D+C 0.274 0.247 0.225 0.306 0.266 0.146  
Sources: RBI, MOSPI and Authors’ calculations.
 
Table 7(III): Performances of One-year ahead Forecasts: Values of Theil’s U for Forecasts vis-à-vis Realised Inflation Values
Data GJ KT MP OD TN DL AS
IESH 0.323 0.296 0.207 0.273 0.319 0.441 0.344
IESH-BA 0.460 0.165 0.283 0.407 0.211 0.274 0.627
Reg-based 0.156 0.095 0.156 0.174 0.131 0.196 0.143
1 IESH 12 CPI-U D 0.163 0.142 0.134 0.136 0.150 0.282 0.286
D+C 0.213 0.206 0.254 0.245 0.262 0.331 0.432
1 IESH 6 CPI-U D 0.152 0.138 0.156 0.115 0.136 0.304 0.298
D+C 0.234 0.167 0.237 0.183 0.151 0.335 0.454
All IESH All CPI-U D 0.249 0.128 0.213 0.227 0.220 0.221 0.282
D+C 0.153 0.137 0.175 0.165 0.094 0.278 0.201
All IESH 12 CPI-U D 0.222 0.130 0.155 0.174 0.180 0.304 0.276
D+C 0.214 0.235 0.244 0.224 0.259 0.351 0.411
All IESH 6 CPI-U D 0.202 0.150 0.166 0.178 0.187 0.323 0.302
D+C 0.234 0.195 0.212 0.184 0.158 0.350 0.444
 
Data TL RJ JK WB UP MHM MHN
IESH 0.246 0.276 0.416 0.328 0.289 0.243 0.277
IESH-BA 0.168 0.362   0.284 0.210 0.318 0.255
Reg-based 0.123 0.177   0.122 0.130 0.167 0.165
1 IESH 12 CPI-U D 0.113 0.152 0.107 0.203 0.146 0.167 0.126
D+C 0.205 0.200 0.318 0.283 0.227 0.222 0.223
1 IESH 6 CPI-U D 0.238 0.155 0.126 0.213 0.176 0.186 0.148
D+C 0.257 0.231 0.310 0.333 0.267 0.255 0.271
All IESH All CPI-U D 0.390 0.176 0.201 0.318 0.207 0.238 0.243
D+C 0.299 0.193 0.273 0.228 0.203 0.234 0.231
All IESH 12 CPI-U D 0.189 0.196 0.107 0.215 0.148 0.211 0.219
D+C 0.208 0.176 0.305 0.278 0.186 0.230 0.233
All IESH 6 CPI-U D 0.297 0.209 0.141 0.223 0.184 0.178 0.185
  D+C 0.290 0.221 0.307 0.324 0.248 0.257 0.262
 
Data BR KL CH JH CHH AC  
IESH 0.202 0.266 0.341 0.191 0.323 0.283  
IESH-BA 0.483 0.382 0.188 0.283 0.185 0.213  
Reg-based 0.191 0.073 0.118 0.118 0.158 0.102  
1 IESH 12 CPI-U D 0.198 0.098 0.156 0.159 0.211 0.097  
D+C 0.277 0.268 0.301 0.329 0.322 0.176  
1 IESH 6 CPI-U D 0.166 0.090 0.147 0.170 0.184 0.104  
D+C 0.275 0.230 0.245 0.318 0.301 0.175  
All IESH All CPI-U D 0.179 0.139 0.120 0.146 0.156 0.187  
D+C 0.202 0.189 0.175 0.281 0.240 0.117  
All IESH 12 CPI-U D 0.196 0.118 0.139 0.159 0.200 0.131  
D+C 0.283 0.224 0.280 0.341 0.294 0.151  
All IESH 6 CPI-U D 0.172 0.167 0.159 0.155 0.166 0.132  
D+C 0.269 0.239 0.236 0.319 0.279 0.140  
Sources: RBI, MOSPI and Authors’ calculations.

From the tables, adjustment of bias using historical deviations of inflation perceptions and expectations from the realised inflation in the ‘IESH-BA’ estimates do not produce nowcasts and forecasts that are closer to the realised inflation than the nowcasts and forecasts obtained using this methodology for most states. The estimates from discrete estimates bear lower errors in nowcasts and forecasts as compared to the sum of discrete and continuous estimates. Table 8 displays the methods for which the error measure Theil’s U is lower than the errors in the remaining methods. For the states excluding Karnataka, Assam, West Bengal, Uttar Pradesh and Kerala, the proposed exercise yields better inflation nowcasts and forecasts than the other benchmark methods.

Table 8: Methods Producing Estimates with Errors Lower than Other Methods
State Nowcasts Three-months-ahead Forecasts One-Year-Ahead Forecasts
Gujarat 1 IESH 6 CPI-U 1 IESH 12 CPI-U 1 IESH 6 CPI-U
Karnataka Reg-based Reg-based Reg-based
Madhya Pradesh 1 IESH 6 CPI-U All IESH 12 CPI-U 1 IESH 12 CPI-U
Odisha All IESH 12 CPI-U 1 IESH 12 CPI-U 1 IESH 6 CPI-U
Tamil Nadu All IESH 6 CPI-U IESH-BA All IESH All CPI-U
Delhi All IESH All CPI-U All IESH All CPI-U Reg-based
Assam All IESH 6 CPI-U Reg-based Reg-based
Telangana 1 IESH 12 CPI-U IESH-BA 1 IESH 12 CPI-U
Rajasthan 1 IESH 6 CPI-U All IESH 12 CPI-U 1 IESH 12 CPI-U
Jammu and Kashmir 1 IESH 6 CPI-U All IESH 6 CPI-U 1 IESH 12 CPI-U
West Bengal 1 IESH 6 CPI-U IESH-BA Reg-based
Uttar Pradesh All IESH 12 CPI-U Reg-based Reg-based
Maharashtra (using Mumbai) 1 IESH 6 CPI-U IESH-BA 1 IESH 12 CPI-U
Maharashtra (using Nagpur) 1 IESH 6 CPI-U IESH-BA 1 IESH 12 CPI-U
Bihar All IESH 6 CPI-U All IESH 6 CPI-U 1 IESH 6 CPI-U
Kerala All IESH 12 CPI-U Reg-based Reg-based
Chandigarh All IESH 6 CPI-U All IESH 12 CPI-U Reg-based
Jharkhand All IESH All CPI-U All IESH All CPI-U Reg-based
Chhattisgarh All IESH All CPI-U All IESH 6 CPI-U All IESH All CPI-U
All India 1 IESH 6 CPI-U IESH-BA 1 IESH 12 CPI-U
Source: Authors’ calculations.

Tables A4, A4 (I), 4(II), A5, A5 (I), A5 (II), A6, A6 (I) and A6 (II) display the performances of the nowcasts and forecasts, computed using other measures of errors defined in Table A3.

An alternative comparison of the forecasts is made in terms of the percentage number of times the directions of forecasts match with the directions of the realised inflation figures from one period to another. The results are shown in Tables A7, A7 (I), and A7 (II). In about half of the states, the nowcasts using the proposed methodology display more directional matches with the realised inflation than the nowcasts from IESH, ‘IESH-BA’ and ‘Reg-based’. The three-months-ahead and one-year-ahead forecasts obtained using the proposed methodology in most of the states display more directional matches with the realised inflation than the forecasts derived from IESH, ‘IESH-BA’ and ‘Reg-based’. This phenomenon is more noticeable in case of the one-year ahead forecasts. Further, in case of three-month ahead and one-year ahead forecasts, the directional matches of proposed estimates and realised inflation are more compared to the directional matches of the estimates from IESH, ‘IESH-BA’ and ‘Reg-based’ with the direction of the realised inflation.

Part of the forecast errors arise because the estimates from the proposed methodologies (explored here), obtained using the survey data of the cities/ centres (where IESH are being conducted), are assumed to be the forecasts of the CPI-U inflation of the entire state. Further, the out-of-sample nowcasts and forecasts are studied for (a) the COVID-19 pandemic period and (b) the post-pandemic period, during which economic uncertainty was a major challenge in forecasting macroeconomic variables. The one-quarter ahead and one-year ahead CPI – Combined (CPI-C) inflation forecasts (for the study period) of the professional forecasters from the Survey of Professional Forecasters conducted by the RBI on a bimonthly basis are plotted against the realised CPI-C inflation in Chart A5.

The errors in one-quarter ahead and one-year ahead CPI-C inflation forecasts of the professional forecasters are compared with the error measures (the least error measure obtained among the five proposed measures) of the forecasts pertaining to all states combined, i.e., ‘AC’, in the Tables A4, A4 (I), A4 (II), A5, A5 (I), A5 (II), A6, A6 (I), and A6 (II), and presented in Table A8. It is observed that the error measures are quite competitive for the three-month ahead forecasts and lower in quantum for the one-year ahead forecasts obtained from the proposed methodologies.

The findings indicate that the proposed method emerges with better performance than a few benchmarks for most of the states. Thus, it opens a path for further exploration in comparison with the conventional econometric model-based forecasts.

V. Conclusion

The modelling of inflation expectations to map these data with the realised inflation prints is an evolving area of research. In this paper, we propose a new approach to modelling inflation expectations, which not only uses centre-wise survey data and state-wise inflation data but also redistributes the inflation expectation of respondents suitably to gain further precision.

For most of the states, the results show a noticeable reduction in the quantum of nowcast/ forecast errors in state-level nowcasts/ forecasts obtained using the proposed methodology when compared with the errors of the survey forecasts, bias-adjusted survey forecasts and linear regression-based forecasts. The percentage of occurrences of directional matches of the nowcasts/ forecasts and the realised inflation figures are more in the case of nowcasts, three-months-ahead forecasts and especially one-year-ahead forecasts obtained using our method than in the estimates ‘IESH’, ‘IESH-BA’ and ‘Reg-based’.

Variation in state-wise inflation can be attributed to factors like transport costs (like fuel prices, tolls, etc.), differences in the state taxation policies and supply chain efficiencies. In such a scenario especially in an inflation targeting regime, one of the plausible ways to reduce forecast error would be to aggregate state-level forecasts, as attempted in this paper. Further, studying these forecasts in comparison with complex econometric model-based state-level forecasts may throw more light on the performance of the proposed method. Going forward, it is possible to develop a model as a mixture of the existing approaches, viz., econometric modelling, Bayesian forecasting, and the approach proposed in this paper to gain greater precision in forecasting inflation.


@ Purnima Shaw (pshaw@rbi.org.in) is Assistant Adviser and R.K. Sinha is Director in the Department of Statistics and Information Management (DSIM), Reserve Bank of India (RBI).

1 Authors are thankful to Muneesh Kapur, Gobinda Prasad Samanta, Jayaraman Alur Raghavan, Sreeramulu Meruva, Sukhbir Singh, members of the DSIM Internal Advisory Group, participants of the Department of Economic and Policy Research (DEPR) Study Circle Seminar and members of the Development Research Group (DRG) and an anonymous external reviewer for providing useful comments which helped in improving the paper. The views and opinions expressed in this paper are solely of the authors and do not reflect the views of the RBI.

2 The IESH was conducted 4 times a calendar year till December 2015. As the frequency of the monetary policy of RBI changed to bimonthly, the survey’s frequency was changed to 6 times a calendar year.

3 Moore (1964), Fama (1965) and Praetz (1969) conducted similar studies.

4 Here, the threshold fk > 10 is chosen based on the IESH data such that gk is always positive for the given data.

5 Here, the reversion from probabilities of discrete distribution from survey to percentiles of continuous distribution of CPI-U inflation are being done. The motive is to derive the percentiles of official inflation using the probabilities obtained from the survey data.

6 The CPI urban inflation figures are considered here instead of the CPI combined inflation because the survey IESH is being conducted in urban areas.

7 For comparability reasons, the general CPI-U inflation data are considered; the survey IESH captures quantitative inflation sentiments of consumers for combined items. The survey does not capture inflation sentiments for sub-groups and hence the proposed methodology is inapplicable for forecasting sub-group-wise inflation figures.

8 Data are available from the Ministry of Statistics and Programme Implementation (MOSPI).

9 The states in which IESH is conducted are Gujarat, Karnataka, Madhya Pradesh, Odisha, Tamil Nadu, Delhi, Assam, Telangana, Rajasthan, Jammu and Kashmir, West Bengal, Uttar Pradesh, Maharashtra, Bihar, Kerala, Chandigarh, Jharkhand and Chhattisgarh. The survey centre Kolhapur is not considered as IESH was discontinued in this centre since June 2016. The corresponding survey centres are Ahmedabad, Bangalore, Bhopal, Bhubaneswar, Chennai, Delhi, Guwahati, Hyderabad, Jaipur, Jammu, Kolkata, Lucknow, Mumbai and Nagpur, Patna, Thiruvananthapuram, Chandigarh, Ranchi and Raipur.

10 The dataset is available on Centralised Information Management System of RBI; https://cimsdbie.rbi.org.in/DBIE/#/dbie/home

11 The information on exact inflation perceptions and expectations (for responses labelled ≥16 per cent) are available in a consistent manner from the December 2013 onwards.

12 For the months April 2020, May 2020, April 2021 and May 2021 for which CPI-U inflation figures are unavailable due to the COVID-19 pandemic restrictions, so the nearest available month’s figures are considered.

13 The survey centre Jammu is added to the list of IESH centres from March 2021 round onwards. Due to insufficient survey data, the ‘IESH-BA’ and ‘Reg-based’ figures for Jammu could not be compiled.

14 The states are denoted as ‘GJ’ for Gujarat, ‘KT’ for Karnataka, ‘MP’ for Madhya Pradesh, ‘OD’ for Odisha, ‘TN’ for Tamil Nadu, ‘DL’ for Delhi, ‘AS’ for Assam, ‘TL’ for Telangana, ‘RJ’ for Rajasthan, ‘JK’ for Jammu and Kashmir, ‘WB’ for West Bengal, ‘UP’ for Uttar Pradesh, ‘MHM’ for Maharashtra using Mumbai’s survey data, ‘MHN’ for Maharashtra using Nagpur’s survey data, ‘BR’ for Bihar, ‘KL’ for Kerala, ‘CH’ for Chandigarh, ‘JH’ for Jharkhand, ‘CHH’ for Chhattisgarh and ‘AC’ for combined14 estimate for all centres. The survey centre Jammu is added to the list of IESH centres from March 2021 round onwards. Due to insufficient survey data, the ‘IESH-BA’ and ‘Reg-based’ figures for Jammu could not be compiled.


References

Abildgren, K., & Kuchler, A. (2021). Revisiting the inflation perception conundrum. Journal of Macroeconomics, 67, https://doi.org/10.1016/j.jmacro.2020.103264

Banerjee, N., & Das, A. (2011). Fan chart: methodology and its application to inflation forecasting in India. RBI Working Paper Series, WPS (DEPR): 5/2011.

Binder, C. (2017). Measuring uncertainty based on rounding: new method and application to inflation expectations. Journal of Monetary Economics, 90, 1-12.

Blix, M., & Sellin, P. (1998). Uncertainty bands for inflation forecasts. Sveriges Riksbank Working Paper Series, No. 65.

Ciumara, R. (2006). An actuarial model based on the composite Weibull-Pareto distribution. Mathematical Reports, 8(58), No. 4/2006.

Cooray, K., & Ananda, M. M. A. (2005). Modelling actuarial data with a composite Lognormal-Pareto model. Scandinavian Actuarial Journal, (5), 321-334.

Fama, E. F. (1965). The behaviour of stock market prices. Journal of Business, 38, 34-105.

Frigessi, A., Haug, O., & Rue, A. (2002). Dynamic mixture model for unsupervised tail estimation without threshold selection. Extremes, 5, 219-235.

Goldfayn-Frank, O., & Wohlfart, J. (2020). Expectation formation in a new environment: evidence from the German reunification. Journal of Monetary Economics, 115, 301-320.

Goyal, A., & Parab, P. (2019). Inflation convergence and anchoring of expectations in India. Working Paper, No. 023, Indira Gandhi Institute of Development Research, July.

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1994). Continuous Univariate Distributions, Vol. 1, 2nd ed. Wiley, New York.

Jonung, L. (1981). Perceived and expected rates of inflation in Sweden. The American Economic Review, 71(5), 961-968.

Krifka, M. (2009). Approximate interpretations of number words: a case for strategic communication. In Erhard W. H., & John A. N. (Eds.), Theory and evidence in semantics (pp. 109-132). Standford, CSLI Publications.

Moore, A. B. (1964). Some characteristics of changes in common stock prices. In Cootner, P. (Eds.), The random character of stock market prices. M.I.T. Press, Cambridge, Mass.

Malmendier, U., & Nagel, S. (2016). Learning from inflation experiences. The Quarterly Journal of Economics, 131(1), 53-87.

Nadarajah, S., & Bakar, S. A. A. (2014). New composite models for the Danish fire insurance data. Scandinavian Actuarial Journal, 2, 180-187.

Osborne, M. (1959). Brownian motion in the stock market. Operations Research, 7, 145-173.

Praetz, P. (1969). Australian share prices and the random walk hypothesis. Australian Journal of Statistics, 11, 123-139.

Praetz, P. (1972). The Distribution of share price changes. The Journal of Business, 45, 49-55.

Qiao, C., Myers, A. T., & Natarajan, A. (2022). Probability distribution of time series with temporal correlation: from frequently occurring to extreme values. Ocean Engineering, 248, 1-19.

RBI. (2010). Inflation expectations survey of households. Retrieved April 19, 2010 from https://www.rbi.org.in/Scripts/PublicationsView.aspx?id=14036

Reiche, L., & Meyler, A. (2022). Making sense of consumer inflation expectations: the role of uncertainty. Discussion Paper, No. 159, European Economy Discussion Papers, European Commission, February.

Scollnik, D. P. (2007). On composite Lognormal-Pareto model. Scandinavian Actuarial Journal, 2007(1), 20-33.

Scollnik, D. P., & Sun, C. (2012). Modelling with Weibull-Pareto models. North American Actuarial Journal, 16 (2), 260-272.

Shaw, P. (2024). Reading consumers’ mind: an analysis of inflation expectations. Macroeconomics and Finance in Emerging Market Economies, https://doi.org/10.1080/17520843.2024.2352955

Singh, D. P., Mishra, A., & Shaw, P. (2024). Taking cognisance of households’ inflation expectations in India. Macroeconomics and Finance in Emerging Market Economies, https://doi.org/10.1080/17520843.2024.2350250

Sinha, R. K. (2023). Inflation and inflation expectations: a distributional mapping. Monthly Bulletin, Reserve Bank of India, September.

Souleles, N. C. (2004). Expectations, heterogeneous forecast errors, and consumption: micro evidence from the Michigen consumer sentiment surveys. Journal of Money, Credit and Banking, 36(1), 39-72.


Annex











Table A2: Fitting of Poisson(λ) Distribution to Discrete Survey Data of September 2023 Round: Estimated Values of λ
Survey Centre Inflation Perceptions Three-months-ahead Inflation Expectations One-year-ahead Inflation Expectations
Ahmedabad 0.054 0.017 0.169
Bangalore 0.114 0.301 0.460
Bhopal 0.034 0.042 0.224
Bhubaneswar 0.091 0.357 0.316
Chennai 0.092 0.190 0.250
Delhi 0.425 0.619 0.692
Guwahati 0.067 0.077 0.043
Hyderabad 0.078 0.276 0.312
Jaipur 0.045 0.100 0.091
Jammu 0.174 0.531 0.333
Kolkata 0.318 0.616 0.662
Lucknow 0.230 0.333 0.255
Mumbai 0.257 0.264 0.159
Nagpur 0.205 0.117 0.483
Patna 0.300 0.300 0.455
Thiruvananthapuram 0.455 0.125 0.182
Chandigarh 0.474 0.105 0.481
Ranchi 0.429 0.333 0.333
Raipur 0.167 0.161 0.258
Sources: RBI and Authors’ calculations.


 
Table A4: Performances of Nowcasts: Values of Errors for Nowcasts vis-à-vis Realised Inflation Values
Data   Measures of Forecast Error GJ KT MP OD TN DL AS
IESH   Bias 3.877 3.585 2.023 3.088 3.594 5.929 3.579
MSE 17.970 13.892 5.472 12.662 15.327 37.463 16.270
RMSE 4.239 3.727 2.339 3.558 3.915 6.121 4.034
MAE 4.506 4.039 2.197 3.661 4.118 7.308 4.150
MAPE 0.779 0.658 0.351 0.678 0.645 1.872 0.838
SFE 1.756 1.046 1.203 1.812 1.590 1.558 1.907
IESH-BA   Bias -2.55 2.15 -1.65 -1.07 -1.30 2.11 -1.91
MSE 9.454 5.665 4.091 4.277 4.096 6.748 7.094
RMSE 3.075 2.380 2.023 2.068 2.024 2.598 2.663
MAE 2.981 2.351 1.860 1.740 1.764 2.355 2.566
MAPE 0.443 0.409 0.253 0.280 0.241 0.781 0.440
SFE 1.756 1.046 1.203 1.812 1.590 1.558 1.907
Reg-based   Bias -1.518 0.535 -1.424 -1.042 -1.029 0.413 0.020
MSE 3.855 1.178 3.524 3.707 3.245 2.572 5.569
RMSE 1.963 1.085 1.877 1.925 1.801 1.604 2.360
MAE 1.754 0.846 1.693 1.539 1.556 1.419 1.852
MAPE 0.265 0.165 0.229 0.230 0.218 0.472 0.347
SFE 1.276 0.968 1.254 1.659 1.515 1.588 2.418
1 IESH 12 CPI-U D Bias 0.062 -0.065 0.539 0.820 0.411 -0.074 0.889
MSE 2.128 1.706 2.616 4.138 2.188 2.990 6.316
RMSE 1.459 1.306 1.618 2.034 1.479 1.729 2.513
MAE 1.261 1.054 1.287 1.805 1.282 1.426 2.105
MAPE 0.236 0.188 0.220 0.355 0.226 0.405 0.470
SFE 1.494 1.337 1.563 1.908 1.456 1.770 2.409
D+C Bias 2.243 2.120 4.119 3.480 3.625 1.773 3.703
MSE 11.166 11.491 23.464 15.805 19.398 9.805 27.005
RMSE 3.342 3.390 4.844 3.976 4.404 3.131 5.197
MAE 3.020 3.201 5.207 4.130 4.521 2.761 5.263
MAPE 0.507 0.529 0.732 0.737 0.682 0.769 0.938
SFE 2.538 2.711 2.612 1.971 2.563 2.645 3.736
1 IESH 6 CPI-U D Bias 0.027 -0.435 0.237 0.439 0.210 -0.169 0.332
MSE 2.111 1.654 1.868 4.031 1.908 2.472 4.239
RMSE 1.453 1.286 1.367 2.008 1.381 1.572 2.059
MAE 1.302 1.100 1.133 1.694 1.089 1.228 1.769
MAPE 0.240 0.187 0.197 0.314 0.192 0.337 0.381
SFE 1.488 1.240 1.379 2.008 1.399 1.602 2.082
D+C Bias 2.160 1.160 3.057 2.193 1.943 1.198 3.098
MSE 11.497 7.396 17.376 10.765 9.798 7.062 25.948
RMSE 3.391 2.720 4.168 3.281 3.130 2.657 5.094
MAE 3.064 2.491 4.020 3.120 2.729 2.225 5.046
MAPE 0.515 0.409 0.569 0.582 0.445 0.570 0.831
SFE 2.678 2.520 2.904 2.500 2.515 2.430 4.143
All IESH All CPI-U D Bias -0.946 -0.516 -1.220 -1.103 -1.108 0.222 -1.785
MSE 2.512 1.320 4.040 4.577 3.618 2.054 8.333
RMSE 1.585 1.149 2.010 2.139 1.902 1.433 2.887
MAE 1.446 0.966 1.917 1.780 1.718 1.200 2.420
MAPE 0.237 0.155 0.276 0.276 0.249 0.368 0.348
SFE 1.303 1.052 1.637 1.878 1.584 1.451 2.325
D+C Bias 0.981 1.871 1.211 0.664 1.275 2.248 -0.637
MSE 4.146 6.680 10.146 5.486 7.319 9.542 6.532
RMSE 2.036 2.585 3.185 2.342 2.705 3.089 2.556
MAE 1.588 2.433 2.624 1.918 2.212 2.857 2.378
MAPE 0.284 0.406 0.410 0.382 0.379 0.754 0.456
SFE 1.828 1.828 3.019 2.302 2.445 2.171 2.536
All IESH 12 CPI-U D Bias -0.659 -0.226 -0.124 -0.101 -0.238 -0.152 -0.001
MSE 2.442 1.666 2.567 3.083 1.833 2.890 3.775
RMSE 1.563 1.291 1.602 1.756 1.354 1.700 1.943
MAE 1.375 1.008 1.321 1.408 1.187 1.436 1.701
MAPE 0.233 0.175 0.214 0.255 0.195 0.405 0.359
SFE 1.452 1.302 1.637 1.796 1.366 1.735 1.991
D+C Bias 1.317 2.400 3.338 2.399 2.994 1.790 2.183
MSE 6.926 12.880 18.657 8.883 15.553 10.069 19.603
RMSE 2.632 3.589 4.319 2.980 3.944 3.173 4.427
MAE 2.316 3.608 4.494 2.949 3.935 2.796 4.101
MAPE 0.409 0.592 0.640 0.552 0.597 0.780 0.689
SFE 2.335 2.734 2.809 1.813 2.630 2.685 3.947
All IESH 6 CPI-U D Bias -0.651 -0.661 -0.501 -0.443 -0.528 -0.236 -0.335
MSE 2.279 1.511 2.062 3.439 1.683 2.465 3.331
RMSE 1.510 1.229 1.436 1.854 1.297 1.570 1.825
MAE 1.335 0.996 1.275 1.431 1.126 1.293 1.509
MAPE 0.222 0.159 0.202 0.243 0.179 0.362 0.299
SFE 1.396 1.062 1.379 1.845 1.214 1.590 1.838
D+C Bias 1.023 1.319 2.314 1.056 1.233 1.343 1.709
MSE 6.336 7.498 14.550 7.763 7.856 7.673 18.683
RMSE 2.517 2.738 3.814 2.786 2.803 2.770 4.322
MAE 2.178 2.415 3.579 2.461 2.365 2.359 3.881
MAPE 0.378 0.386 0.512 0.455 0.396 0.601 0.605
SFE 2.357 2.459 3.107 2.642 2.580 2.483 4.068
Sources: RBI, MOSPI and Authors’ calculations.
 
Table A4 (I): Performances of Nowcasts: Values of Errors for Nowcasts vis-à-vis Realised Inflation Values (contd.)
Data Measures of Forecast Error TL RJ JK WB UP MHM MHN
IESH Bias 3.075 3.971 1.999 4.123 4.204 3.680 3.045
MSE 11.440 20.730 26.044 21.045 19.383 15.532 10.825
RMSE 3.382 4.553 5.103 4.587 4.403 3.941 3.290
MAE 3.452 4.864 5.631 4.879 4.873 4.207 3.394
MAPE 0.463 0.937 0.814 0.815 0.780 0.646 0.527
SFE 1.444 2.283 4.811 2.062 1.340 1.445 1.278
IESH-BA Bias -0.96 -0.22   -1.68 -0.10 -0.93 -0.94
MSE 2.908 5.012   6.880 1.719 2.860 2.431
RMSE 1.705 2.239   2.623 1.311 1.691 1.559
MAE 1.476 1.932   2.291 1.011 1.546 1.360
MAPE 0.190 0.373   0.291 0.178 0.236 0.203
SFE 1.444 2.283   2.062 1.340 1.445 1.278
Reg-based Bias -1.537 -0.645   -1.203 -0.676 -1.263 -1.452
MSE 3.728 3.606   6.215 1.643 3.244 3.512
RMSE 1.931 1.899   2.493 1.282 1.801 1.874
MAE 1.691 1.583   2.079 1.097 1.609 1.685
MAPE 0.201 0.284   0.275 0.182 0.227 0.232
SFE 1.197 1.830   2.238 1.116 1.316 1.215
1 IESH 12 CPI-U D Bias 0.037 0.616 0.410 0.037 0.209 -0.450 0.423
MSE 2.810 3.105 2.153 4.274 1.993 2.584 2.404
RMSE 1.676 1.762 1.467 2.067 1.412 1.607 1.551
MAE 1.301 1.621 1.210 1.835 1.124 1.419 1.357
MAPE 0.187 0.325 0.214 0.290 0.213 0.219 0.228
SFE 1.717 1.692 1.444 2.118 1.431 1.581 1.529
D+C Bias 3.761 3.003 4.125 3.162 2.771 2.448 3.247
MSE 26.768 12.522 25.917 19.243 13.757 13.617 16.424
RMSE 5.174 3.539 5.091 4.387 3.709 3.690 4.053
MAE 5.276 3.441 5.555 4.411 3.676 3.413 4.057
MAPE 0.663 0.650 0.788 0.666 0.617 0.502 0.596
SFE 3.641 1.917 3.057 3.116 2.527 2.829 2.485
1 IESH 6 CPI-U D Bias -0.827 0.369 0.057 -0.005 -0.097 -0.456 0.253
MSE 7.207 2.972 1.351 3.281 1.830 2.151 1.964
RMSE 2.685 1.724 1.162 1.811 1.353 1.466 1.401
MAE 2.251 1.449 0.880 1.545 1.120 1.277 1.267
MAPE 0.292 0.264 0.150 0.240 0.205 0.194 0.210
SFE 2.617 1.725 1.190 1.856 1.383 1.428 1.412
D+C Bias 1.626 2.556 3.129 3.040 1.932 2.991 3.431
MSE 23.426 11.922 18.763 20.798 11.423 17.672 19.928
RMSE 4.840 3.453 4.332 4.560 3.380 4.204 4.464
MAE 5.129 3.223 4.247 4.292 3.172 4.118 4.408
MAPE 0.652 0.553 0.581 0.569 0.519 0.591 0.631
SFE 4.671 2.378 3.070 3.483 2.842 3.026 2.927
All IESH All CPI-U D Bias -2.135 -0.557 -0.694 -2.389 -1.097 -1.224 -1.185
MSE 7.878 2.649 2.930 11.570 2.506 3.613 3.642
RMSE 2.807 1.628 1.712 3.401 1.583 1.901 1.908
MAE 2.670 1.306 1.461 2.938 1.369 1.747 1.754
MAPE 0.333 0.243 0.221 0.330 0.215 0.252 0.254
SFE 1.866 1.567 1.603 2.481 1.169 1.490 1.533
D+C Bias -0.078 1.801 1.731 -0.906 0.785 2.141 2.044
MSE 11.282 7.481 11.654 8.364 5.451 11.245 11.354
RMSE 3.359 2.735 3.414 2.892 2.335 3.353 3.370
MAE 2.872 2.596 3.151 2.422 1.969 2.827 2.840
MAPE 0.354 0.533 0.473 0.305 0.327 0.413 0.415
SFE 3.441 2.110 3.015 2.814 2.253 2.645 2.745
All IESH 12 CPI-U D Bias -0.677 -0.480 0.057 -0.433 -0.431 -0.902 -0.826
MSE 5.295 2.620 1.794 4.196 1.601 4.278 4.255
RMSE 2.301 1.618 1.340 2.049 1.265 2.068 2.063
MAE 1.734 1.312 1.133 1.792 1.007 1.722 1.726
MAPE 0.221 0.241 0.197 0.272 0.181 0.253 0.257
SFE 2.254 1.584 1.371 2.052 1.219 1.907 1.937
D+C Bias 3.336 1.356 3.705 2.680 2.078 1.819 1.866
MSE 27.952 4.520 23.901 15.368 9.752 12.632 12.841
RMSE 5.287 2.126 4.889 3.920 3.123 3.554 3.583
MAE 5.689 1.598 5.332 3.781 3.110 3.366 3.435
MAPE 0.718 0.359 0.758 0.579 0.535 0.514 0.523
SFE 4.203 1.678 3.268 2.931 2.389 3.129 3.135
All IESH 6 CPI-U D Bias -1.227 -0.757 -0.203 -0.518 -0.684 -0.532 -0.520
MSE 5.619 2.710 1.408 3.888 2.230 2.242 2.314
RMSE 2.370 1.646 1.186 1.972 1.493 1.497 1.521
MAE 1.973 1.280 1.038 1.664 1.196 1.308 1.340
MAPE 0.245 0.211 0.171 0.242 0.209 0.199 0.205
SFE 2.078 1.498 1.198 1.950 1.360 1.434 1.465
D+C Bias 1.373 1.147 2.769 2.487 1.321 2.550 2.394
MSE 19.576 6.932 16.957 19.699 9.392 15.522 15.391
RMSE 4.425 2.633 4.118 4.438 3.065 3.940 3.923
MAE 4.557 2.157 4.134 3.976 2.824 3.713 3.664
MAPE 0.585 0.390 0.576 0.523 0.476 0.538 0.532
SFE 4.310 2.428 3.123 3.767 2.834 3.078 3.185
Sources: RBI, MOSPI and Authors’ calculations.
 
Table A4 (II): Performances of Nowcasts: Values of Errors for Nowcasts vis-à-vis Realised Inflation Values (contd.)
Data Measures of Forecast Error BR KL CH JH CHH AC
IESH Bias 1.580 0.915 5.555 1.598 3.151 3.569
MSE 6.629 1.617 32.416 6.567 15.075 13.517
RMSE 2.575 1.272 5.694 2.563 3.883 3.677
MAE 2.421 1.127 6.729 2.363 3.701 4.006
MAPE 0.362 0.222 1.209 0.420 1.099 0.627
SFE 2.083 0.905 1.280 2.053 2.324 0.904
IESH-BA Bias -1.96 -3.04 1.08 -0.70 0.29 -0.73
MSE 7.955 10.032 2.718 4.507 5.230 1.318
RMSE 2.820 3.167 1.649 2.123 2.287 1.148
MAE 2.523 3.351 1.432 1.909 1.959 1.012
MAPE 0.289 0.535 0.323 0.292 0.636 0.160
SFE 2.083 0.905 1.280 2.053 2.324 0.904
Reg-based Bias -1.521 -0.667 -0.631 -0.704 -0.400 -0.896
MSE 6.817 1.249 1.643 4.017 3.324 1.620
RMSE 2.611 1.118 1.282 2.004 1.823 1.273
MAE 2.240 0.923 1.138 1.799 1.605 1.121
MAPE 0.259 0.158 0.234 0.272 0.433 0.173
SFE 2.175 0.919 1.143 1.923 1.823 0.927
1 IESH 12 CPI-U D Bias 0.997 0.530 0.574 0.212 0.726 0.196
MSE 5.522 1.271 1.441 3.396 3.369 1.050
RMSE 2.350 1.128 1.200 1.843 1.836 1.025
MAE 1.997 0.805 0.988 1.627 1.487 0.858
MAPE 0.289 0.161 0.232 0.276 0.450 0.158
SFE 2.180 1.020 1.080 1.876 1.728 1.031
D+C Bias 4.598 4.197 2.714 4.830 3.547 3.035
MSE 27.220 20.359 11.949 31.137 17.186 10.715
RMSE 5.217 4.512 3.457 5.580 4.146 3.273
MAE 5.609 4.914 3.191 6.309 4.494 3.379
MAPE 0.727 0.782 0.591 0.935 1.053 0.544
SFE 2.526 1.697 2.193 2.863 2.199 1.258
1 IESH 6 CPI-U D Bias 0.559 0.198 0.299 -0.056 0.450 -0.031
MSE 3.792 1.176 1.427 3.687 3.123 1.011
RMSE 1.947 1.085 1.195 1.920 1.767 1.005
MAE 1.725 0.802 0.938 1.673 1.390 0.846
MAPE 0.251 0.164 0.216 0.269 0.376 0.151
SFE 1.911 1.093 1.185 1.967 1.751 1.030
D+C Bias 3.708 3.171 2.070 4.027 2.751 2.424
MSE 25.016 14.265 9.681 26.874 13.844 8.046
RMSE 5.002 3.777 3.111 5.184 3.721 2.836
MAE 4.971 3.807 2.669 5.631 3.759 2.686
MAPE 0.646 0.625 0.488 0.819 0.831 0.438
SFE 3.440 2.102 2.380 3.345 2.567 1.509
All IESH All CPI-U D Bias -0.394 -0.679 0.000 0.712 -0.007 -1.041
MSE 3.506 1.183 0.833 3.149 2.352 2.218
RMSE 1.872 1.088 0.913 1.775 1.534 1.489
MAE 1.429 0.954 0.668 1.599 1.176 1.310
MAPE 0.189 0.170 0.164 0.285 0.302 0.199
SFE 1.876 0.871 0.935 1.665 1.572 1.091
D+C Bias 2.111 1.837 2.103 3.530 1.872 1.323
MSE 11.957 7.306 7.757 19.020 8.438 3.604
RMSE 3.458 2.703 2.785 4.361 2.905 1.898
MAE 3.296 2.527 2.649 4.379 2.693 1.571
MAPE 0.468 0.440 0.542 0.681 0.629 0.271
SFE 2.806 2.032 1.872 2.625 2.276 1.396
All IESH 12 CPI-U D Bias 0.879 -0.197 0.330 1.351 0.410 -0.401
MSE 5.014 0.767 0.913 4.496 2.579 1.050
RMSE 2.239 0.876 0.956 2.120 1.606 1.025
MAE 1.953 0.748 0.748 1.906 1.296 0.898
MAPE 0.275 0.144 0.184 0.344 0.397 0.151
SFE 2.110 0.875 0.919 1.675 1.591 0.966
D+C Bias 5.332 2.866 2.530 5.922 2.920 2.385
MSE 34.776 11.847 11.260 39.619 13.461 6.960
RMSE 5.897 3.442 3.356 6.294 3.669 2.638
MAE 6.636 3.457 3.071 7.403 3.781 2.595
MAPE 0.833 0.565 0.562 1.063 0.919 0.431
SFE 2.582 1.953 2.259 2.185 2.277 1.155
All IESH 6 CPI-U D Bias 0.462 -0.648 -0.013 0.967 0.065 -0.537
MSE 3.481 2.300 0.767 3.587 2.502 1.192
RMSE 1.866 1.517 0.876 1.894 1.582 1.092
MAE 1.584 1.138 0.705 1.720 1.274 0.938
MAPE 0.224 0.200 0.153 0.303 0.319 0.151
SFE 1.852 1.405 0.897 1.669 1.620 0.974
D+C Bias 3.899 1.329 1.561 4.810 2.044 1.795
MSE 27.144 8.765 7.575 30.323 11.186 5.185
RMSE 5.210 2.961 2.752 5.507 3.345 2.277
MAE 5.343 2.694 2.294 6.089 3.167 2.015
MAPE 0.680 0.441 0.408 0.880 0.684 0.338
SFE 3.541 2.711 2.323 2.747 2.713 1.435
Sources: RBI, MOSPI and Authors’ calculations.
 
Table A5: Performances of Three-months-ahead Forecasts: Values of Errors for Forecasts vis-à-vis Realised Inflation Values
Data Measures of Forecast Error GJ KT MP OD TN DL AS
IESH Bias 5.083 4.837 3.133 4.410 5.271 6.930 4.408
MSE 28.956 24.939 11.578 23.472 29.601 50.524 24.081
RMSE 5.381 4.994 3.403 4.845 5.441 7.108 4.907
MAE 6.133 5.718 3.512 5.258 6.337 8.833 5.285
MAPE 0.970 0.873 0.529 0.906 0.963 2.268 1.062
SFE 1.811 1.274 1.360 2.055 1.380 1.618 2.210
IESH-BA Bias -2.12 2.81 -1.47 -0.69 -0.24 2.40 -0.47
MSE 7.604 9.466 3.913 4.504 1.872 8.269 4.870
RMSE 2.758 3.077 1.978 2.122 1.368 2.876 2.207
MAE 2.496 3.115 1.767 1.770 1.167 2.771 1.955
MAPE 0.361 0.519 0.238 0.286 0.197 0.915 0.434
SFE 1.811 1.274 1.360 2.055 1.380 1.618 2.210
Reg-based Bias -1.38 0.79 -1.35 -1.23 -0.43 0.57 0.37
MSE 3.085 1.630 3.453 3.907 2.104 2.889 3.530
RMSE 1.756 1.277 1.858 1.977 1.451 1.700 1.879
MAE 1.501 1.042 1.673 1.624 1.206 1.576 1.550
MAPE 0.222 0.196 0.227 0.233 0.191 0.539 0.336
SFE 1.115 1.029 1.311 1.587 1.418 1.640 1.888
1 IESH 12 CPI-U D Bias -0.121 -0.432 0.188 0.023 0.201 -0.315 1.013
MSE 2.801 2.114 2.713 3.852 2.101 4.063 7.283
RMSE 1.674 1.454 1.647 1.963 1.449 2.016 2.699
MAE 1.419 1.159 1.431 1.655 1.315 1.718 2.403
MAPE 0.248 0.189 0.240 0.302 0.238 0.440 0.540
SFE 1.711 1.423 1.677 2.011 1.471 2.040 2.563
D+C Bias 1.745 1.363 3.245 2.285 2.889 1.354 3.545
MSE 9.089 7.684 17.940 11.906 16.183 9.859 29.941
RMSE 3.015 2.772 4.236 3.451 4.023 3.140 5.472
MAE 2.582 2.686 4.263 3.305 3.982 2.890 5.281
MAPE 0.437 0.434 0.618 0.611 0.641 0.801 0.988
SFE 2.519 2.473 2.790 2.650 2.869 2.903 4.271
1 IESH 6 CPI-U D Bias -0.313 -0.816 -0.237 -0.334 0.018 -0.433 0.617
MSE 2.785 2.825 3.438 4.828 2.331 3.658 6.746
RMSE 1.669 1.681 1.854 2.197 1.527 1.913 2.597
MAE 1.320 1.354 1.571 1.831 1.363 1.543 2.358
MAPE 0.220 0.209 0.249 0.317 0.245 0.387 0.500
SFE 1.680 1.506 1.884 2.225 1.564 1.909 2.585
D+C Bias 1.384 0.433 2.065 0.970 1.395 0.684 3.110
MSE 9.204 6.575 16.271 8.108 7.846 7.436 31.944
RMSE 3.034 2.564 4.034 2.848 2.801 2.727 5.652
MAE 2.673 2.423 3.926 2.539 2.290 2.269 5.571
MAPE 0.450 0.398 0.581 0.459 0.398 0.587 0.959
SFE 2.766 2.590 3.550 2.743 2.489 2.705 4.836
All IESH All CPI-U D Bias -1.532 -0.861 -1.476 -1.739 -1.403 -0.063 -1.909
MSE 4.932 2.308 5.293 6.931 4.777 2.565 8.396
RMSE 2.221 1.519 2.301 2.633 2.186 1.602 2.898
MAE 2.145 1.212 2.118 2.489 1.948 1.375 2.520
MAPE 0.345 0.186 0.296 0.380 0.280 0.415 0.383
SFE 1.647 1.283 1.808 2.026 1.717 1.640 2.233
D+C Bias 0.206 1.263 0.752 -0.030 0.742 1.695 -0.893
MSE 4.693 5.360 9.871 6.532 6.008 7.802 7.165
RMSE 2.166 2.315 3.142 2.556 2.451 2.793 2.677
MAE 1.709 2.095 2.688 2.163 2.124 2.311 2.409
MAPE 0.294 0.353 0.417 0.377 0.376 0.716 0.448
SFE 2.210 1.988 3.126 2.619 2.394 2.275 2.586
All IESH 12 CPI-U D Bias -1.265 -0.546 -0.424 -0.794 -0.468 -0.419 -0.040
MSE 3.529 2.072 2.373 3.870 2.337 4.002 6.412
RMSE 1.879 1.439 1.540 1.967 1.529 2.001 2.532
MAE 1.696 1.171 1.363 1.612 1.366 1.711 2.351
MAPE 0.270 0.187 0.211 0.246 0.219 0.426 0.496
SFE 1.424 1.365 1.517 1.844 1.491 2.004 2.594
D+C Bias 0.545 1.705 2.585 1.418 2.498 1.374 1.828
MSE 5.336 10.045 13.718 7.135 13.821 10.641 25.302
RMSE 2.310 3.169 3.704 2.671 3.718 3.262 5.030
MAE 1.969 3.113 3.653 2.441 3.687 2.981 4.865
MAPE 0.363 0.492 0.535 0.448 0.592 0.812 0.889
SFE 2.300 2.738 2.718 2.320 2.821 3.032 4.802
All IESH 6 CPI-U D Bias -1.251 -0.960 -0.521 -1.048 -0.796 -0.497 -0.435
MSE 4.118 2.994 2.955 5.175 2.703 3.509 7.298
RMSE 2.029 1.730 1.719 2.275 1.644 1.873 2.701
MAE 1.845 1.409 1.398 1.933 1.470 1.551 2.460
MAPE 0.294 0.216 0.210 0.299 0.233 0.388 0.468
SFE 1.638 1.475 1.678 2.069 1.474 1.851 2.732
D+C Bias 0.271 0.659 1.736 0.142 0.688 0.806 1.276
MSE 6.707 8.404 12.766 6.516 6.400 7.635 26.119
RMSE 2.590 2.899 3.573 2.553 2.530 2.763 5.111
MAE 2.400 2.769 3.330 2.092 2.164 2.378 4.845
MAPE 0.423 0.443 0.498 0.363 0.376 0.614 0.794
SFE 2.639 2.893 3.200 2.612 2.495 2.708 5.071
Sources: RBI, MOSPI and Authors’ calculations.
 
Table A5 (I): Performances of Three-months-ahead Forecasts: Values of Errors for Forecasts vis-à-vis Realised Inflation Values (contd.)
Data Measures of Forecast Error TL RJ JK WB UP MHM MHN
IESH Bias 4.326 4.401 2.347 5.585 5.008 4.740 4.597
MSE 20.988 23.603 29.136 34.387 26.435 24.188 22.076
RMSE 4.581 4.858 5.398 5.864 5.142 4.918 4.699
MAE 5.062 5.315 6.110 6.850 5.945 5.594 5.362
MAPE 0.653 0.957 0.926 1.074 0.937 0.826 0.782
SFE 1.545 2.109 4.981 1.830 1.193 1.343 0.994
IESH-BA Bias -0.24 -0.11   -0.28 0.29 -0.14 0.06
MSE 2.328 4.248   3.267 1.438 1.736 0.944
RMSE 1.526 2.061   1.807 1.199 1.318 0.971
MAE 1.296 1.701   1.576 0.947 1.123 0.797
MAPE 0.193 0.324   0.260 0.182 0.191 0.138
SFE 1.545 2.109   1.830 1.193 1.343 0.994
Reg-based Bias -1.33 -0.68   -0.33 -0.46 -0.99 -1.10
MSE 2.894 2.738   3.513 1.136 2.381 2.356
RMSE 1.701 1.655   1.874 1.066 1.543 1.535
MAE 1.500 1.412   1.600 0.922 1.360 1.328
MAPE 0.190 0.244   0.256 0.158 0.200 0.189
SFE 1.093 1.546   1.891 0.987 1.212 1.095
1 IESH 12 CPI-U D Bias -0.270 0.281 0.218 0.127 0.438 -0.711 -0.033
MSE 3.484 3.923 4.534 4.660 2.924 3.821 3.609
RMSE 1.867 1.981 2.129 2.159 1.710 1.955 1.900
MAE 1.629 1.813 1.813 1.801 1.456 1.788 1.707
MAPE 0.226 0.336 0.326 0.288 0.272 0.275 0.277
SFE 1.893 2.009 2.170 2.208 1.694 1.866 1.946
D+C Bias 3.080 2.203 3.829 3.039 2.701 1.911 2.714
MSE 21.555 10.554 29.002 19.389 11.698 12.563 15.157
RMSE 4.643 3.249 5.385 4.403 3.420 3.544 3.893
MAE 4.699 3.049 5.957 4.329 3.279 3.132 3.612
MAPE 0.589 0.525 0.924 0.669 0.559 0.487 0.562
SFE 3.560 2.447 3.880 3.265 2.150 3.059 2.860
1 IESH 6 CPI-U D Bias -1.530 -0.051 -0.038 0.125 -0.037 -0.574 -0.051
MSE 11.995 6.861 3.811 4.679 2.578 3.397 3.353
RMSE 3.463 2.619 1.952 2.163 1.606 1.843 1.831
MAE 2.677 2.093 1.583 1.914 1.356 1.521 1.551
MAPE 0.295 0.336 0.275 0.305 0.246 0.224 0.245
SFE 3.184 2.684 2.000 2.213 1.645 1.795 1.876
D+C Bias 0.554 1.831 2.848 2.776 1.686 2.383 2.790
MSE 22.998 15.988 21.423 21.617 10.231 16.317 17.870
RMSE 4.796 3.998 4.629 4.649 3.199 4.039 4.227
MAE 4.714 3.724 4.811 4.152 2.967 3.852 3.994
MAPE 0.561 0.612 0.744 0.563 0.496 0.562 0.581
SFE 4.881 3.643 3.738 3.821 2.785 3.343 3.254
All IESH All CPI-U D Bias -3.082 -0.630 -1.037 -2.159 -1.131 -1.363 -1.414
MSE 17.318 3.372 5.114 9.272 2.678 4.761 4.971
RMSE 4.161 1.836 2.261 3.045 1.636 2.182 2.230
MAE 3.993 1.534 2.115 2.725 1.328 1.987 2.033
MAPE 0.457 0.255 0.327 0.366 0.203 0.286 0.292
SFE 2.865 1.767 2.059 2.200 1.212 1.746 1.766
D+C Bias -1.198 1.448 1.182 -0.763 0.645 1.728 1.614
MSE 19.506 9.068 14.115 5.620 5.319 10.622 10.508
RMSE 4.417 3.011 3.757 2.371 2.306 3.259 3.242
MAE 3.924 2.832 3.393 1.982 1.999 2.691 2.695
MAPE 0.439 0.530 0.556 0.285 0.331 0.397 0.399
SFE 4.356 2.706 3.654 2.300 2.269 2.832 2.881
All IESH 12 CPI-U D Bias -1.063 -0.481 -0.113 -0.238 -0.461 -1.100 -1.077
MSE 5.145 2.705 3.626 4.585 1.911 5.481 5.348
RMSE 2.268 1.645 1.904 2.141 1.382 2.341 2.313
MAE 1.858 1.459 1.597 1.746 1.230 1.939 1.896
MAPE 0.240 0.254 0.274 0.269 0.216 0.276 0.268
SFE 2.054 1.612 1.948 2.180 1.335 2.118 2.097
D+C Bias 2.746 1.137 3.455 2.697 1.849 1.480 1.399
MSE 22.461 4.075 25.775 17.086 7.834 12.501 11.763
RMSE 4.739 2.019 5.077 4.134 2.799 3.536 3.430
MAE 5.099 1.725 5.640 3.941 2.583 3.126 3.013
MAPE 0.658 0.311 0.867 0.618 0.455 0.485 0.468
SFE 3.958 1.709 3.812 3.210 2.153 3.291 3.209
All IESH 6 CPI-U D Bias -2.045 -0.833 -0.373 -0.325 -0.682 -0.730 -0.823
MSE 13.132 3.827 3.405 4.958 2.820 3.451 3.745
RMSE 3.624 1.956 1.845 2.227 1.679 1.858 1.935
MAE 2.873 1.614 1.528 1.989 1.402 1.527 1.597
MAPE 0.309 0.257 0.250 0.310 0.236 0.220 0.229
SFE 3.066 1.814 1.852 2.257 1.573 1.750 1.795
D+C Bias 0.357 0.796 2.484 2.414 0.994 1.990 1.859
MSE 23.423 9.539 19.853 20.304 8.649 13.916 13.937
RMSE 4.840 3.089 4.456 4.506 2.941 3.730 3.733
MAE 4.774 2.561 4.614 3.979 2.655 3.429 3.460
MAPE 0.572 0.454 0.704 0.545 0.445 0.504 0.511
SFE 4.946 3.058 3.791 3.899 2.836 3.233 3.317
Sources: RBI, MOSPI and Authors’ calculations.
 
Table A5 (II): Performances of Three-months-ahead Forecasts: Values of Errors for Forecasts vis-à-vis Realised Inflation Values (contd.)
Data Measures of Forecast Error BR KL CH JH CHH AC
IESH Bias 2.415 2.533 5.807 2.362 4.095 4.763
MSE 9.886 7.326 35.845 8.658 20.594 23.424
RMSE 3.144 2.707 5.987 2.942 4.538 4.840
MAE 3.065 2.749 7.121 2.694 4.831 5.577
MAPE 0.457 0.491 1.391 0.489 1.272 0.840
SFE 2.063 0.978 1.494 1.798 2.004 0.881
IESH-BA Bias -1.72 -1.53 1.35 -0.29 1.03 0.01
MSE 7.019 3.249 3.950 3.162 4.879 0.740
RMSE 2.649 1.803 1.987 1.778 2.209 0.860
MAE 2.350 1.616 1.767 1.536 1.850 0.780
MAPE 0.285 0.263 0.443 0.274 0.603 0.142
SFE 2.063 0.978 1.494 1.798 2.004 0.881
Reg-based Bias -1.56 -0.28 -0.82 -0.56 -0.22 -0.63
MSE 5.973 0.623 2.519 2.640 3.281 1.029
RMSE 2.444 0.789 1.587 1.625 1.811 1.015
MAE 1.975 0.665 1.384 1.385 1.582 0.859
MAPE 0.223 0.124 0.286 0.231 0.457 0.136
SFE 1.931 0.758 1.395 1.561 1.842 0.816
1 IESH 12 CPI-U D Bias 1.134 0.504 0.619 0.914 0.764 0.024
MSE 5.409 1.262 1.837 2.708 4.291 1.002
RMSE 2.326 1.123 1.355 1.646 2.072 1.001
MAE 1.989 0.897 1.070 1.454 1.770 0.861
MAPE 0.293 0.179 0.292 0.264 0.559 0.154
SFE 2.081 1.029 1.236 1.402 1.973 1.025
D+C Bias 4.616 3.735 2.399 4.895 3.284 2.543
MSE 28.566 18.297 9.581 30.804 18.343 7.786
RMSE 5.345 4.278 3.095 5.550 4.283 2.790
MAE 5.887 4.513 2.918 6.168 4.428 2.782
MAPE 0.787 0.743 0.587 0.908 1.145 0.462
SFE 2.760 2.136 2.005 2.681 2.817 1.176
1 IESH 6 CPI-U D Bias 0.795 0.306 0.487 0.548 0.552 -0.219
MSE 4.413 1.072 2.100 2.581 4.275 1.304
RMSE 2.101 1.035 1.449 1.607 2.068 1.142
MAE 1.847 0.877 1.213 1.481 1.733 0.969
MAPE 0.271 0.176 0.305 0.259 0.535 0.164
SFE 1.993 1.013 1.398 1.547 2.042 1.148
D+C Bias 3.697 2.709 1.775 4.214 2.587 1.860
MSE 25.930 12.144 8.470 26.945 14.302 5.865
RMSE 5.092 3.485 2.910 5.191 3.782 2.422
MAE 4.990 3.309 2.621 5.503 3.666 2.192
MAPE 0.673 0.556 0.544 0.817 0.906 0.368
SFE 3.588 2.246 2.363 3.106 2.826 1.589
All IESH All CPI-U D Bias -0.747 -0.533 -0.091 0.619 -0.257 -1.270
MSE 3.785 1.224 1.443 2.283 2.963 2.870
RMSE 1.945 1.106 1.201 1.511 1.721 1.694
MAE 1.578 0.985 0.944 1.303 1.413 1.525
MAPE 0.202 0.178 0.245 0.243 0.396 0.236
SFE 1.841 0.994 1.227 1.412 1.744 1.148
D+C Bias 1.490 1.925 1.769 3.277 1.414 0.898
MSE 10.018 9.310 7.080 17.796 7.333 2.720
RMSE 3.165 3.051 2.661 4.219 2.708 1.649
MAE 2.902 2.940 2.581 4.017 2.530 1.323
MAPE 0.421 0.524 0.604 0.652 0.676 0.230
SFE 2.862 2.426 2.036 2.722 2.366 1.418
All IESH 12 CPI-U D Bias 0.714 -0.081 0.346 1.313 0.164 -0.598
MSE 5.004 0.972 1.024 3.231 3.300 1.301
RMSE 2.237 0.986 1.012 1.797 1.817 1.141
MAE 1.782 0.814 0.766 1.634 1.492 0.979
MAPE 0.254 0.160 0.221 0.299 0.455 0.157
SFE 2.173 1.007 0.974 1.258 1.854 0.995
D+C Bias 4.598 2.773 2.256 5.603 2.358 1.956
MSE 28.085 12.929 8.602 34.612 13.339 5.088
RMSE 5.300 3.596 2.933 5.883 3.652 2.256
MAE 5.885 3.674 2.671 6.877 3.654 2.144
MAPE 0.763 0.622 0.542 1.006 0.981 0.366
SFE 2.700 2.346 1.921 1.838 2.858 1.152
All IESH 6 CPI-U D Bias 0.413 -0.520 -0.088 1.047 -0.110 -0.744
MSE 3.853 2.580 1.505 2.686 2.898 1.676
RMSE 1.963 1.606 1.227 1.639 1.702 1.294
MAE 1.651 1.194 0.997 1.528 1.381 1.039
MAPE 0.237 0.209 0.258 0.277 0.396 0.160
SFE 1.966 1.557 1.254 1.292 1.741 1.085
D+C Bias 3.171 1.344 1.237 4.644 1.625 1.296
MSE 23.391 10.131 6.982 27.945 10.204 3.747
RMSE 4.836 3.183 2.642 5.286 3.194 1.936
MAE 4.596 2.933 2.387 5.687 3.033 1.666
MAPE 0.627 0.497 0.502 0.847 0.745 0.286
SFE 3.742 2.956 2.393 2.587 2.818 1.473
Sources: RBI, MOSPI and Authors’ calculations.
 
Table A6: Performances of One-year-ahead Forecasts: Values of Errors for Forecasts vis-à-vis Realised Inflation Values
Data Measures of Forecast Error GJ KT MP OD TN DL AS
IESH Bias 5.163 4.690 2.972 3.872 5.437 6.010 4.135
MSE 28.458 24.453 10.652 18.172 31.928 42.197 25.075
RMSE 5.335 4.945 3.264 4.263 5.650 6.496 5.008
MAE 6.183 5.560 3.318 4.511 6.598 7.604 5.306
MAPE 1.000 0.864 0.535 0.815 1.007 2.065 1.100
SFE 1.377 1.607 1.383 1.827 1.578 2.527 2.895
IESH-BA Bias -3.45 1.63 -2.57 -3.10 -1.64 1.18 -3.71
MSE 13.700 5.118 8.407 12.804 5.073 7.476 21.722
RMSE 3.701 2.262 2.900 3.578 2.252 2.734 4.661
MAE 3.906 1.969 2.835 3.545 2.082 2.509 4.690
MAPE 0.603 0.356 0.381 0.510 0.299 0.827 0.707
SFE 1.377 1.607 1.383 1.827 1.578 2.527 2.895
Reg-based Bias -1.10 -0.01 -1.17 -0.77 -0.62 0.09 0.95
MSE 2.535 1.287 3.245 3.640 2.332 2.928 2.620
RMSE 1.592 1.134 1.801 1.908 1.527 1.711 1.619
MAE 1.414 0.922 1.579 1.556 1.255 1.531 1.477
MAPE 0.230 0.174 0.224 0.244 0.191 0.481 0.335
SFE 1.179 1.162 1.399 1.790 1.430 1.751 1.346
1 IESH 12 CPI-U D Bias -0.600 -0.662 0.089 0.102 -0.171 -0.412 1.971
MSE 3.102 2.617 2.981 2.608 3.354 5.574 13.016
RMSE 1.761 1.618 1.726 1.615 1.831 2.361 3.608
MAE 1.536 1.420 1.565 1.363 1.583 2.224 3.417
MAPE 0.265 0.238 0.260 0.258 0.256 0.602 0.744
SFE 1.697 1.512 1.767 1.651 1.868 2.382 3.097
D+C Bias 0.976 1.216 2.817 2.501 2.531 1.217 4.623
MSE 7.244 7.699 16.138 12.415 15.662 11.575 46.827
RMSE 2.691 2.775 4.017 3.524 3.958 3.402 6.843
MAE 2.489 2.528 3.852 3.233 3.795 3.095 7.070
MAPE 0.436 0.441 0.596 0.618 0.616 0.956 1.331
SFE 2.570 2.556 2.934 2.543 3.117 3.255 5.170
1 IESH 6 CPI-U D Bias -0.456 -0.706 -0.217 0.000 -0.319 -0.424 1.614
MSE 2.800 2.432 3.873 1.805 2.665 6.551 13.555
RMSE 1.673 1.560 1.968 1.344 1.633 2.559 3.682
MAE 1.452 1.328 1.784 1.106 1.367 2.396 3.333
MAPE 0.252 0.221 0.282 0.206 0.216 0.645 0.725
SFE 1.650 1.425 2.004 1.377 1.641 2.586 3.391
D+C Bias 0.936 0.663 2.057 1.606 0.794 0.827 4.627
MSE 8.875 4.655 12.904 6.043 4.042 11.175 53.581
RMSE 2.979 2.158 3.592 2.458 2.010 3.343 7.320
MAE 2.618 1.913 3.483 2.264 1.661 3.100 7.642
MAPE 0.448 0.335 0.541 0.426 0.275 0.869 1.439
SFE 2.898 2.104 3.018 1.907 1.893 3.319 5.812
All IESH All CPI-U D Bias -1.880 -0.775 -1.616 -1.758 -1.891 0.047 -1.785
MSE 5.699 2.071 5.691 5.137 5.232 3.740 5.956
RMSE 2.387 1.439 2.385 2.266 2.287 1.934 2.440
MAE 2.267 1.304 2.377 2.010 2.066 1.766 2.117
MAPE 0.359 0.219 0.348 0.294 0.283 0.528 0.359
SFE 1.507 1.242 1.798 1.466 1.319 1.981 1.705
D+C Bias -0.384 1.177 0.190 -0.071 -0.223 2.123 -0.404
MSE 2.919 3.330 5.318 3.768 1.312 9.312 4.142
RMSE 1.708 1.825 2.306 1.941 1.145 3.052 2.035
MAE 1.428 1.570 1.841 1.608 0.932 2.668 1.653
MAPE 0.240 0.278 0.301 0.292 0.156 0.824 0.355
SFE 1.706 1.429 2.355 1.988 1.151 2.246 2.044
All IESH 12 CPI-U D Bias -1.570 -0.545 -0.562 -0.652 -0.796 -0.621 0.575
MSE 4.780 2.231 3.606 3.722 4.355 6.188 9.745
RMSE 2.186 1.494 1.899 1.929 2.087 2.488 3.122
MAE 1.788 1.316 1.618 1.540 1.809 2.352 2.975
MAPE 0.259 0.228 0.241 0.243 0.269 0.617 0.671
SFE 1.559 1.425 1.858 1.861 1.977 2.468 3.144
D+C Bias -0.162 1.377 1.796 1.132 1.789 0.989 2.938
MSE 6.111 10.498 13.298 8.509 14.051 12.704 35.379
RMSE 2.472 3.240 3.647 2.917 3.748 3.564 5.948
    MAE 2.170 3.083 3.466 2.618 3.592 3.252 5.861
MAPE 0.369 0.525 0.533 0.511 0.590 0.973 1.143
SFE 2.528 3.005 3.252 2.755 3.375 3.509 5.299
All IESH 6 CPI-U D Bias -1.343 -0.829 -0.627 -0.831 -1.254 -0.722 0.390
MSE 4.177 2.843 4.107 3.776 4.296 6.883 11.655
RMSE 2.044 1.686 2.027 1.943 2.073 2.624 3.414
MAE 1.779 1.480 1.895 1.587 1.782 2.477 3.190
MAPE 0.282 0.245 0.288 0.250 0.253 0.620 0.714
SFE 1.579 1.505 1.975 1.800 1.691 2.585 3.475
D+C Bias -0.064 0.345 0.872 0.061 -0.639 0.493 2.632
MSE 7.555 6.253 8.794 4.836 3.511 11.625 41.758
RMSE 2.749 2.501 2.966 2.199 1.874 3.410 6.462
MAE 2.523 2.259 2.782 1.953 1.528 3.184 6.326
MAPE 0.436 0.370 0.435 0.350 0.240 0.841 1.259
SFE 2.816 2.538 2.904 2.253 1.805 3.457 6.048
Sources: RBI, MOSPI and Authors’ calculations.
 
Table A6 (I): Performances of One-year-ahead Forecasts: Values of Errors for Forecasts vis-à-vis Realised Inflation Values (contd.)
Data Measures of Forecast Error TL RJ JK WB UP MHM MHN
IESH Bias 4.326 3.749 -0.048 5.353 4.491 3.526 4.224
MSE 20.271 17.831 34.492 32.305 21.448 14.892 21.148
RMSE 4.502 4.223 5.873 5.684 4.631 3.859 4.599
MAE 5.027 4.393 6.649 6.540 5.235 4.035 5.034
MAPE 0.657 0.843 1.013 1.094 0.841 0.634 0.775
SFE 1.279 1.992 6.018 1.956 1.158 1.607 1.864
IESH-BA Bias -1.67 -2.65   -2.07 -1.74 -2.70 -1.95
MSE 4.335 10.812   7.945 4.304 9.730 7.113
RMSE 2.082 3.288   2.819 2.075 3.119 2.667
MAE 1.846 3.097   2.588 1.874 3.021 2.349
MAPE 0.237 0.462   0.358 0.297 0.423 0.319
SFE 1.279 1.992   1.956 1.158 1.607 1.864
Reg-based Bias -1.19 -0.86   -0.33 -0.84 -1.38 -1.39
MSE 2.470 3.532   2.030 1.910 3.344 3.234
RMSE 1.572 1.879   1.425 1.382 1.829 1.798
MAE 1.372 1.573   1.120 1.165 1.577 1.555
MAPE 0.179 0.268   0.194 0.193 0.222 0.218
SFE 1.049 1.713   1.419 1.124 1.234 1.167
1 IESH 12 CPI-U D Bias -0.726 -0.316 0.490 -0.089 0.227 -1.050 -0.301
MSE 2.234 2.909 1.913 6.020 2.997 3.595 2.337
RMSE 1.495 1.706 1.383 2.454 1.731 1.896 1.529
MAE 1.297 1.341 1.027 2.008 1.562 1.713 1.353
MAPE 0.174 0.263 0.215 0.342 0.283 0.255 0.222
SFE 1.815 1.717 1.326 2.513 1.758 1.996 2.025
D+C Bias 1.803 1.737 4.832 2.444 2.500 0.907 1.291
MSE 10.991 7.107 31.625 17.590 10.407 9.150 9.878
RMSE 3.315 2.666 5.624 4.194 3.226 3.025 3.143
MAE 3.159 2.462 6.136 4.252 3.111 2.588 2.725
MAPE 0.424 0.506 0.895 0.730 0.534 0.415 0.428
SFE 2.851 2.072 2.948 3.493 2.089 2.957 2.936
1 IESH 6 CPI-U D Bias -1.602 -0.203 0.426 0.296 -0.064 -0.866 -0.008
MSE 9.231 3.095 2.632 7.098 4.179 4.670 3.395
RMSE 3.038 1.759 1.622 2.664 2.044 2.161 1.843
MAE 2.453 1.442 1.130 2.238 1.875 1.925 1.653
MAPE 0.287 0.280 0.242 0.383 0.330 0.290 0.279
SFE 2.645 1.791 1.604 2.713 2.094 2.029 1.888
D+C Bias 0.643 1.921 4.107 3.023 1.909 2.044 2.317
MSE 15.796 9.976 27.630 27.811 13.785 14.274 16.841
RMSE 3.974 3.158 5.256 5.274 3.713 3.778 4.104
MAE 3.640 2.918 5.313 5.052 3.639 3.509 3.893
MAPE 0.466 0.557 0.843 0.755 0.608 0.535 0.579
SFE 4.019 2.569 3.362 4.428 3.263 3.256 3.471
All IESH All CPI-U D Bias -3.574 -0.918 -0.881 -2.126 -1.508 -1.641 -1.700
MSE 17.987 3.459 5.403 10.068 4.368 6.692 6.934
RMSE 4.241 1.860 2.325 3.173 2.090 2.587 2.633
MAE 4.368 1.575 2.137 3.033 1.913 2.505 2.569
MAPE 0.525 0.269 0.375 0.437 0.295 0.365 0.375
SFE 2.339 1.657 2.204 2.414 1.483 2.049 2.061
D+C Bias -2.097 1.360 1.541 -0.814 0.403 1.245 0.893
MSE 14.314 6.306 15.392 6.712 6.162 10.759 9.953
RMSE 3.783 2.511 3.923 2.591 2.482 3.280 3.155
MAE 3.402 2.302 3.080 2.413 1.909 2.586 2.480
MAPE 0.404 0.480 0.579 0.383 0.325 0.396 0.378
SFE 3.227 2.163 3.697 2.520 2.510 3.110 3.101
All IESH 12 CPI-U D Bias -1.633 -1.136 0.316 -0.480 -0.810 -1.449 -1.547
MSE 5.597 4.159 1.864 6.317 2.536 5.469 5.840
RMSE 2.366 2.039 1.365 2.513 1.593 2.339 2.417
MAE 2.002 1.750 1.069 2.060 1.315 2.039 2.124
MAPE 0.254 0.296 0.227 0.340 0.209 0.292 0.304
SFE 1.754 1.735 1.361 2.528 1.405 1.881 1.902
D+C Bias 0.967 0.331 4.402 1.976 1.348 0.590 0.021
MSE 10.472 4.410 27.701 15.957 5.959 9.557 9.071
RMSE 3.236 2.100 5.263 3.995 2.441 3.091 3.012
MAE 3.030 1.920 5.781 3.933 2.173 2.725 2.658
MAPE 0.410 0.401 0.865 0.683 0.384 0.431 0.415
SFE 3.164 2.125 2.956 3.557 2.086 3.109 3.086
All IESH 6 CPI-U D Bias -2.417 -1.095 0.156 -0.068 -0.838 -0.909 -1.014
MSE 12.984 4.783 3.140 7.400 3.974 4.226 4.509
RMSE 3.603 2.187 1.772 2.720 1.993 2.056 2.123
MAE 3.132 1.892 1.328 2.221 1.667 1.902 1.972
MAPE 0.365 0.305 0.268 0.366 0.261 0.294 0.303
SFE 2.738 1.940 1.809 2.787 1.853 1.889 1.912
D+C Bias -0.491 0.605 3.479 2.505 0.906 1.476 1.063
MSE 18.092 7.700 25.397 24.707 10.289 13.695 13.591
RMSE 4.253 2.775 5.040 4.971 3.208 3.701 3.687
MAE 4.090 2.544 5.207 4.525 3.026 3.438 3.404
MAPE 0.523 0.449 0.839 0.672 0.501 0.522 0.510
SFE 4.329 2.775 3.736 4.399 3.153 3.478 3.617
Sources: RBI, MOSPI and Authors’ calculations.
 
Table A6 (II): Performances of One-year-ahead Forecasts: Values of Errors for Forecasts vis-à-vis Realised Inflation Values (contd.)
Data Measures of Forecast Error BR KL CH JH CHH AC
IESH Bias 2.165 3.730 4.817 1.687 4.212 4.429
MSE 10.487 15.004 25.860 7.051 20.965 20.875
RMSE 3.238 3.873 5.085 2.655 4.579 4.569
MAE 3.125 4.226 5.743 2.412 4.956 5.150
MAPE 0.464 0.738 1.098 0.454 1.238 0.806
SFE 2.468 1.072 1.671 2.101 1.840 1.148
IESH-BA Bias -4.15 -2.88 -0.70 -2.04 0.91 -1.80
MSE 23.041 9.382 3.157 8.350 4.060 4.511
RMSE 4.800 3.063 1.777 2.890 2.015 2.124
MAE 5.114 3.170 1.628 2.626 1.778 1.988
MAPE 0.608 0.521 0.331 0.352 0.512 0.304
SFE 2.468 1.072 1.671 2.101 1.840 1.149
Reg-based Bias -1.51 -0.02 -0.35 -0.18 0.72 -0.72
MSE 5.498 0.614 1.305 2.004 2.796 1.260
RMSE 2.345 0.784 1.142 1.416 1.672 1.123
MAE 1.932 0.622 0.924 1.258 1.383 0.962
MAPE 0.232 0.129 0.201 0.220 0.457 0.155
SFE 1.837 0.803 1.115 1.439 1.546 0.879
1 IESH 12 CPI-U D Bias 0.737 0.245 0.681 0.990 0.825 -0.329
MSE 8.477 1.185 2.807 4.461 5.117 1.228
RMSE 2.912 1.089 1.675 2.112 2.262 1.108
MAE 2.489 0.932 1.409 1.978 2.025 0.947
MAPE 0.332 0.192 0.336 0.360 0.640 0.166
SFE 2.886 1.087 1.568 1.912 2.158 1.084
D+C Bias 3.313 3.237 2.516 4.734 3.235 1.952
MSE 23.211 14.532 15.213 31.946 18.216 5.836
RMSE 4.818 3.812 3.900 5.652 4.268 2.416
MAE 5.011 3.962 3.612 6.213 4.251 2.284
MAPE 0.686 0.693 0.741 0.987 1.183 0.399
SFE 3.584 2.063 3.054 3.165 2.852 1.458
1 IESH 6 CPI-U D Bias 0.531 0.250 0.596 0.679 0.894 -0.266
MSE 5.773 0.998 2.464 4.910 3.969 1.426
RMSE 2.403 0.999 1.570 2.216 1.992 1.194
MAE 1.984 0.803 1.368 2.025 1.758 1.026
MAPE 0.266 0.168 0.329 0.357 0.565 0.179
SFE 2.401 0.991 1.488 2.161 1.824 1.193
D+C Bias 3.430 2.228 1.862 3.903 2.849 1.761
MSE 23.483 9.230 8.949 27.670 15.222 5.639
RMSE 4.846 3.038 2.991 5.260 3.902 2.375
MAE 5.035 2.641 2.806 5.457 3.648 2.171
MAPE 0.659 0.487 0.568 0.872 1.027 0.373
SFE 3.508 2.117 2.399 3.613 2.731 1.633
All IESH All CPI-U D Bias -0.976 -0.976 -0.258 0.873 0.387 -1.487
MSE 5.234 1.892 1.394 3.648 2.563 3.709
RMSE 2.288 1.375 1.181 1.910 1.601 1.926
MAE 1.734 1.261 0.981 1.663 1.314 1.842
MAPE 0.203 0.224 0.216 0.323 0.449 0.290
SFE 2.120 0.994 1.181 1.741 1.592 1.255
D+C Bias 0.980 1.249 1.586 3.232 2.058 0.513
MSE 9.101 5.401 4.235 19.313 8.263 2.061
RMSE 3.017 2.324 2.058 4.395 2.875 1.436
MAE 2.705 2.097 1.873 4.163 2.468 1.098
MAPE 0.388 0.399 0.414 0.731 0.809 0.201
SFE 2.924 2.008 1.343 3.051 2.057 1.374
All IESH 12 CPI-U D Bias 0.408 -0.466 0.201 1.451 0.314 -0.889
MSE 7.930 1.492 2.045 4.734 4.166 2.019
RMSE 2.816 1.222 1.430 2.176 2.041 1.421
MAE 2.464 1.009 1.187 2.049 1.739 1.251
MAPE 0.332 0.188 0.273 0.387 0.537 0.202
SFE 2.855 1.157 1.451 1.661 2.066 1.135
D+C Bias 3.419 1.959 1.927 5.236 2.348 1.202
MSE 24.619 8.501 11.953 36.067 13.339 3.851
RMSE 4.962 2.916 3.457 6.006 3.652 1.962
MAE 5.130 2.827 3.282 6.936 3.597 1.711
MAPE 0.697 0.520 0.674 1.092 1.024 0.306
SFE 3.684 2.212 2.941 3.015 2.867 1.590
All IESH 6 CPI-U D Bias 0.422 -0.795 -0.184 1.300 0.377 -0.862
MSE 6.056 2.881 2.509 4.372 2.899 2.073
RMSE 2.461 1.697 1.584 2.091 1.703 1.440
MAE 2.117 1.370 1.326 1.884 1.401 1.248
MAPE 0.288 0.245 0.290 0.358 0.470 0.200
SFE 2.484 1.537 1.612 1.678 1.701 1.182
D+C Bias 3.250 0.375 0.873 4.528 1.984 0.835
MSE 21.934 7.800 7.192 29.410 11.396 3.142
RMSE 4.683 2.793 2.682 5.423 3.376 1.773
MAE 4.768 2.443 2.427 5.782 2.963 1.525
MAPE 0.620 0.456 0.472 0.926 0.891 0.269
SFE 3.455 2.836 2.598 3.058 2.798 1.602
Sources: RBI, MOSPI and Authors’ calculations.
 
Table A7: Directional Matches (in Per cent) in Nowcasts and Forecasts with Realised Inflation Figures
  Data GJ KT MP OD TN DL AS
Nowcasts IESH 31.6 57.9 57.9 63.2 57.9 68.4 31.6
IESH-BA 31.6 57.9 57.9 63.2 57.9 68.4 31.6
Reg-based 26.3 57.9 57.9 47.4 57.9 52.6 57.9
1 IESH 12 CPI-U D 73.7 31.6 57.9 31.6 36.8 42.1 52.6
D+C 68.4 36.8 63.2 52.6 31.6 31.6 52.6
1 IESH 6 CPI-U D 63.2 26.3 57.9 31.6 57.9 36.8 47.4
D+C 52.6 31.6 52.6 47.4 47.4 26.3 36.8
All IESH All CPI-U D 57.9 31.6 36.8 36.8 42.1 36.8 47.4
D+C 57.9 26.3 42.1 26.3 42.1 26.3 47.4
All IESH 12 CPI-U D 47.4 31.6 47.4 42.1 36.8 42.1 36.8
D+C 63.2 31.6 57.9 57.9 36.8 36.8 36.8
All IESH 6 CPI-U D 31.6 36.8 52.6 42.1 52.6 31.6 57.9
D+C 31.6 42.1 52.6 42.1 52.6 31.6 47.4
Three-months-ahead Forecasts IESH 21.1 21.1 57.9 47.4 42.1 42.1 31.6
IESH-BA 21.1 21.1 57.9 47.4 42.1 42.1 31.6
Reg-based 57.9 21.1 57.9 47.4 42.1 42.1 63.2
1 IESH 12 CPI-U D 42.1 52.6 47.4 36.8 52.6 63.2 42.1
D+C 42.1 52.6 42.1 47.4 42.1 63.2 47.4
1 IESH 6 CPI-U D 31.6 47.4 42.1 36.8 47.4 57.9 47.4
D+C 31.6 57.9 47.4 47.4 42.1 47.4 42.1
All IESH All CPI-U D 57.9 52.6 57.9 42.1 47.4 57.9 36.8
D+C 52.6 47.4 47.4 42.1 42.1 63.2 42.1
All IESH 12 CPI-U D 36.8 57.9 57.9 31.6 42.1 52.6 26.3
D+C 47.4 57.9 52.6 31.6 42.1 52.6 31.6
All IESH 6 CPI-U D 52.6 57.9 52.6 36.8 47.4 57.9 57.9
D+C 47.4 57.9 52.6 47.4 47.4 57.9 52.6
One-year-ahead Forecasts IESH 47.4 57.9 47.4 31.6 31.6 36.8 68.4
IESH-BA 47.4 57.9 47.4 31.6 31.6 36.8 68.4
Reg-based 57.9 47.4 42.1 63.2 63.2 26.3 36.8
1 IESH 12 CPI-U D 31.6 47.4 57.9 57.9 47.4 68.4 57.9
D+C 36.8 47.4 42.1 42.1 47.4 57.9 57.9
1 IESH 6 CPI-U D 63.2 52.6 57.9 68.4 68.4 47.4 52.6
D+C 52.6 68.4 63.2 63.2 63.2 68.4 42.1
All IESH All CPI-U D 68.4 57.9 47.4 68.4 57.9 78.9 36.8
D+C 63.2 63.2 47.4 57.9 52.6 84.2 36.8
All IESH 12 CPI-U D 47.4 42.1 36.8 36.8 47.4 57.9 63.2
D+C 52.6 42.1 36.8 26.3 47.4 52.6 57.9
All IESH 6 CPI-U D 63.2 52.6 63.2 42.1 47.4 63.2 47.4
D+C 57.9 68.4 68.4 47.4 42.1 73.7 31.6
Sources: RBI, MOSPI and Authors’ calculations.
 
Table A7 (I): Directional Matches (in Per cent) in Nowcasts and Forecasts with Realised Inflation Figures (contd.)
  Data TL RJ JK WB UP MHM MHN
Nowcasts IESH 57.9 47.4 73.7 68.4 52.6 57.9 57.9
IESH-BA 57.9 47.4 73.7 68.4 52.6 57.9 57.9
Reg-based 52.6 42.1 0.0 63.2 47.4 47.4 52.6
1 IESH 12 CPI-U D 47.4 63.2 47.4 47.4 57.9 42.1 42.1
D+C 31.6 63.2 42.1 47.4 42.1 52.6 26.3
1 IESH 6 CPI-U D 57.9 73.7 52.6 47.4 52.6 42.1 47.4
D+C 42.1 68.4 47.4 52.6 42.1 36.8 42.1
All IESH All CPI-U D 57.9 68.4 57.9 42.1 36.8 63.2 47.4
D+C 57.9 52.6 63.2 36.8 36.8 52.6 36.8
All IESH 12 CPI-U D 36.8 73.7 52.6 57.9 47.4 57.9 57.9
D+C 26.3 63.2 47.4 47.4 42.1 47.4 52.6
All IESH 6 CPI-U D 47.4 68.4 57.9 42.1 36.8 42.1 42.1
D+C 42.1 63.2 63.2 36.8 31.6 31.6 36.8
Three-months-ahead Forecasts IESH 47.4 36.8 26.3 26.3 42.1 36.8 57.9
IESH-BA 47.4 36.8 26.3 26.3 42.1 36.8 57.9
Reg-based 36.8 26.3 0.0 26.3 42.1 26.3 47.4
1 IESH 12 CPI-U D 42.1 47.4 47.4 52.6 47.4 63.2 47.4
D+C 52.6 47.4 42.1 57.9 42.1 57.9 42.1
1 IESH 6 CPI-U D 57.9 36.8 42.1 52.6 57.9 57.9 36.8
D+C 63.2 36.8 52.6 52.6 63.2 68.4 57.9
All IESH All CPI-U D 42.1 26.3 47.4 52.6 52.6 42.1 63.2
D+C 42.1 36.8 47.4 57.9 57.9 57.9 68.4
All IESH 12 CPI-U D 52.6 36.8 57.9 31.6 47.4 42.1 42.1
D+C 52.6 42.1 42.1 42.1 42.1 47.4 47.4
All IESH 6 CPI-U D 57.9 31.6 42.1 42.1 52.6 52.6 57.9
D+C 63.2 31.6 47.4 47.4 63.2 68.4 68.4
One-year-ahead Forecasts IESH 52.6 26.3 15.8 42.1 36.8 36.8 31.6
IESH-BA 52.6 26.3 15.8 42.1 36.8 36.8 31.6
Reg-based 57.9 36.8 15.8 52.6 57.9 52.6 52.6
1 IESH 12 CPI-U D 63.2 63.2 89.5 52.6 57.9 63.2 57.9
D+C 73.7 63.2 84.2 52.6 57.9 57.9 68.4
1 IESH 6 CPI-U D 42.1 73.7 78.9 36.8 57.9 42.1 52.6
D+C 47.4 57.9 68.4 42.1 57.9 52.6 57.9
All IESH All CPI-U D 36.8 21.1 73.7 47.4 52.6 57.9 63.2
D+C 42.1 36.8 73.7 57.9 42.1 68.4 73.7
All IESH 12 CPI-U D 73.7 36.8 78.9 52.6 52.6 57.9 57.9
D+C 73.7 52.6 68.4 47.4 57.9 57.9 57.9
All IESH 6 CPI-U D 36.8 42.1 57.9 36.8 57.9 47.4 47.4
D+C 42.1 47.4 63.2 47.4 57.9 47.4 47.4
Sources: RBI, MOSPI and Authors’ calculations.
 
Table A7 (II): Directional Matches (in Per cent) in Nowcasts and Forecasts with Realised Inflation Figures (contd.)
  Data BR KL CH JH CHH AC
Nowcasts IESH 52.6 73.7 52.6 21.1 42.1 57.9
IESH-BA 52.6 73.7 52.6 21.1 42.1 57.9
Reg-based 47.4 68.4 36.8 21.1 26.3 68.4
1 IESH 12 CPI-U D 47.4 63.2 47.4 63.2 21.1 42.1
D+C 68.4 47.4 57.9 42.1 36.8 42.1
1 IESH 6 CPI-U D 47.4 63.2 47.4 52.6 31.6 52.6
D+C 47.4 52.6 63.2 52.6 31.6 36.8
All IESH All CPI-U D 36.8 63.2 68.4 52.6 36.8 42.1
D+C 42.1 42.1 52.6 47.4 42.1 47.4
All IESH 12 CPI-U D 31.6 52.6 47.4 42.1 47.4 47.4
D+C 31.6 52.6 57.9 31.6 57.9 57.9
All IESH 6 CPI-U D 36.8 68.4 68.4 63.2 26.3 47.4
D+C 47.4 57.9 63.2 42.1 36.8 36.8
Three-months-ahead Forecasts IESH 68.4 52.6 57.9 47.4 52.6 26.3
IESH-BA 68.4 52.6 57.9 47.4 52.6 26.3
Reg-based 57.9 47.4 31.6 42.1 47.4 15.8
1 IESH 12 CPI-U D 15.8 57.9 57.9 68.4 57.9 52.6
D+C 31.6 47.4 63.2 42.1 68.4 57.9
1 IESH 6 CPI-U D 31.6 57.9 52.6 52.6 63.2 47.4
D+C 42.1 52.6 52.6 42.1 73.7 52.6
All IESH All CPI-U D 47.4 42.1 63.2 36.8 57.9 52.6
D+C 36.8 42.1 52.6 47.4 52.6 47.4
All IESH 12 CPI-U D 31.6 47.4 63.2 42.1 52.6 36.8
D+C 42.1 36.8 57.9 47.4 52.6 47.4
All IESH 6 CPI-U D 42.1 31.6 57.9 47.4 63.2 42.1
D+C 36.8 31.6 52.6 42.1 63.2 47.4
One-year-ahead Forecasts IESH 57.9 26.3 31.6 36.8 63.2 26.3
IESH-BA 57.9 26.3 31.6 36.8 63.2 26.3
Reg-based 42.1 73.7 63.2 52.6 57.9 52.6
1 IESH 12 CPI-U D 42.1 52.6 52.6 52.6 52.6 47.4
D+C 42.1 42.1 63.2 47.4 47.4 47.4
1 IESH 6 CPI-U D 57.9 63.2 47.4 57.9 68.4 52.6
D+C 63.2 42.1 68.4 47.4 78.9 52.6
All IESH All CPI-U D 68.4 42.1 52.6 52.6 68.4 57.9
D+C 42.1 36.8 52.6 57.9 52.6 63.2
All IESH 12 CPI-U D 36.8 42.1 52.6 57.9 57.9 47.4
D+C 31.6 47.4 52.6 52.6 57.9 31.6
All IESH 6 CPI-U D 63.2 26.3 52.6 47.4 68.4 31.6
D+C 47.4 26.3 52.6 47.4 63.2 42.1
Sources: RBI, MOSPI and Authors’ calculations.

 
Table A8: Performance of SPF Forecasts vis-à-vis Forecasts from Proposed Methodology
Measures of Forecast Error 1-Quarter Ahead SPF Forecast Three-months-ahead Proposed Forecast 1-Year Ahead SPF Forecast One-year-ahead Proposed Forecast
Bias -0.587 0.024 -1.672 0.266
MSE 0.919 1.002 3.544 1.228
RMSE 0.959 1.001 1.883 1.108
MAE 0.773 0.861 1.713 0.947
MAPE 0.124 0.154 0.278 0.166
Theil's U 0.029 0.084 0.070 0.097
SFE 0.575 1.025 0.747 1.084
Directional Matches (in per cent) 38.5 52.6 76.9 63.2
Sources: RBI, MOSPI and Authors’ calculations.

RbiTtsCommonUtility

PLAYING
LISTEN

Related Assets

RBI-Install-RBI-Content-Global

RbiSocialMediaUtility

Install the RBI mobile application and get quick access to the latest news!

Scan Your QR code to Install our app

RbiWasItHelpfulUtility

Was this page helpful?